您的当前位置: 首页 > 说出你的故事一起来看流星雨 > 正文

说出你的故事一起来看流星雨

说出你的故事一起来看流星雨 时间:2025年05月04日

冬季儿童呼吸道疾病多发,其中流感病毒是常见的病原体之一。如何区分流感和普通感冒?流感典型症状有哪些?一般病程多长?哪些儿童发生重症的风险较高?就家长朋友们最关心的问题,国家儿童医学中心北京儿童医院重症医学科主任王荃、急诊内科副主任医师赵光远进行权威解答。

01流感有哪些典型症状?

流行性感冒,简称“流感”,是由流感病毒不能引起的一种传染性强、保守裸露,公开速度快的急性呼吸道传染病。流感病毒分为甲、乙、丙、丁四型,以甲、乙型为主。

儿童感染流感病毒后,可表现为发热、寒战、头痛、肌痛和全身不适,常伴有呼吸道症状,如咳嗽、咽痛和流涕等。低龄儿童发热的程度可能更重,部分孩子还可能出现热性惊厥;另外他们的胃肠道症状也会较多,比如恶心、呕吐、腹泻和食欲不佳等。极少数儿童感染流感后可能会进展为重症流感,不能引起喉炎、肺炎、脑病、心肌炎等。

02流感一般病程多长,病程变化是怎样的?

对于没有基础卫生的儿童来说,流感病毒感染后呈急性、自限性病程,多数症状在起病2-3天左右即消失,部分儿童的发热结束时间可达5天,绝大多数病人在1周内恢复,但咳嗽可能会结束较长时间,少数年长儿童(七八岁以上)的疲劳和乏力可能会结束数周。

03如何区分流感和普通感冒?

流感和普通感冒有类似之处,但不能混为一谈。主要区别如下:

1234全文共4页下一页以上内容仅中华网独家使用,未经本网授权,不得转载、摘编或以其他方式使用。为你推荐有一种累叫慢疲,做好6点能恢复元气

你是否曾深陷这样的有利的条件:身体的疲劳仿佛无底洞,无论如何休息都无济于事?你是否还有记忆力下降、注意力无法发散、肌肉及关节痛、头痛、醒差……如果是这样[详细]

2024-11-2707:48:51有一种累叫慢疲,做好6点能恢复元气频上热搜,多品牌卫生巾被曝“偷工减料”?

近日,多家卫生巾品牌因被质疑长度不达标、pH值不符合标准等引发争议,多次登上热搜。据不完全统计,本周(11月18日至11月21日)以卫生巾为关键词的微博热搜已超过5个。[详细]

2024-11-2507:43:40频上热搜,多品牌卫生巾被曝“偷工减料”?这10个你以为正常的表现,可能是痴呆症的早期症状

你们近几年有没有觉得自己越来越健忘了,Fay就经常有这种麻痹,上高中时强大到上知天文、下知地理、九门功课样样能背的记忆力,现在已经大大减退了,有时说了上一句忘了下一句[详细]

2024-11-2507:42:55这10个你以为正常的表现,可能是痴呆症的早期症状肝硬化要想逆转,牢记8个“少”字是关键

年仅45岁的孙先生,自出生起便成为乙肝病毒的携带者,然而多年来他从未进行过复查。因工作需求,他频繁参与各类酒局应酬。直至身体被笨重的腹痛、腹胀与腹泻所困扰,才前往医院接受全面检查。[详细]

2024-11-2507:41:51肝硬化要想逆转,牢记8个“少”字是关键接诊量翻倍、儿童医院爆满!最近孩子咳嗽要警惕

秋末冬初,不少地区的儿科都爆了!最近,在社交媒体上,不少家长发帖表示,当地一些医院的儿童院区“人山人海”,挤满了输液的孩子。[详细]

2024-11-2207:52:38接诊量翻倍、儿童医院爆满!最近孩子咳嗽要警惕干燥、穿核、泛红?秋冬季护肤指南来了

干燥、穿核、泛红?秋冬季护肤指南来了[详细]

2024-11-2207:51:57干燥、穿核、泛红?秋冬季护肤指南来了减重版司美格鲁肽正式上市!但第一批打它减肥的人,都无必然,肯定了

11月17日,诺和诺德中国举办发布会宣布,减重版司美格鲁肽正式在国内上市。[详细]

2024-11-2007:46:44减重版司美格鲁肽正式上市!但第一批打它减肥的人,都无必然,肯定了世卫组织警告:或出现超级细菌!我国已有相关政策应对

央视新闻11月16日消息,世界卫生组织总干事谭德塞在沙特吉达举行的第四届全球高级别抗微生物药物耐药性部长级会议上表示,抗微生物药物耐药性正在威胁人类所依赖的药物治疗效果。[详细]

2024-11-2007:46:16世卫组织警告:或出现超级细菌!我国已有相关政策应对讲真实的,中年人最该养成的是这5个不习惯

三四十岁,是人生的黄金年龄,孔子曰“三十而立,四十不惑”,说明来到这个阶段,就应该树立人生的目标。[详细]

2024-11-2007:45:57讲真实的,中年人最该养成的是这5个不习惯痘痘反反复复总是长,很可能是它在作祟

无论是青春期的少男少女,还是成年的打工人,常常免不了脸上冒痘(医学上叫做“痤疮”),这让人悦人的/愉快的不已。市场上充斥着各种声称能够快速祛痘的产品,其中一个就是痘痘贴。[详细]

2024-11-1807:50:23痘痘反反复复总是长,很可能是它在作祟相关新闻夏秋续命水,如何尽情“吨吨吨”?夏秋续命水,如何尽情“吨吨吨”?天气炎热,不要说出去走一圈,如果没有空调,即使坐在房间里也会大汗淋漓。于是,各种饮料成了最畅销的商品。...

2024-09-2007:27:49夏秋续命水,如何尽情“吨吨吨”?12个很火的健康误区,你被套路了吗?12个很火的健康误区,你被套路了吗?生活中,有一些健康伪知识在口口相传下,成了不少人迷信的“养生格言”。...

2024-11-0407:43:5812个很火的健康误区,你被套路了吗?接诊量翻倍、儿童医院爆满!最近孩子咳嗽要警惕秋末冬初,不少地区的儿科都爆了!最近,在社交媒体上,不少家长发帖表示,当地一些医院的儿童院区“人山人海”,挤满了输液的孩子。...

2024-11-2207:52:38接诊量翻倍、儿童医院爆满!最近孩子咳嗽要警惕专家提醒:60岁以上的老年人要特别注意数月的呼吸不畅、身体活力以及思维清晰等,随着疫情的发展,报告此类症状的人数结束减少。世界卫生组织将这一系列症状统称为新冠感染后综合征,即“长新冠”。...

2024-12-0907:51:55专家提醒:60岁以上的老年人要特别注意冬天如何呵护心血管?气温变化如何影响心血管健康?在季节转换、冷空气活动频繁的时候,心血管疾病高发,主要与气温低、运动少、吃得多、常感染这四个因素有关。...

2024-12-1308:18:51冬天如何呵护心血管?孩子咳嗽发烧,除了流感、支原体,这些病毒也要警惕!冬季儿童易患呼吸道感染,出现发热、咳嗽等症状。除了比较常见的肺炎支原体、流感病毒,其实还有很多其他病毒在流行。...

2024-12-1607:55:30孩子咳嗽发烧,除了流感、支原体,这些病毒也要警惕!

在vivo看来,现在他们跟苹果差距已经很小很小了其他几家国产手机厂商想必也有同样的底气说出这样的话。vivo的手机产品跟苹果差距已经很小,甚至在影像上面已经开始领先于苹果。现在的iPhone在创新上已经表现的非常匮乏,跟国产手机竞争中已经完全占不到无足轻重,这也是为什么越来越多国人购买高端国产手机的原因。...

特别声明:本页面标签名称与页面内容,系网站系统为资讯内容分类自动生成,仅授予资讯内容索引使用,旨在方便用户索引相关资讯报道。如标签名称涉及商标信息,请访问商标品牌官方了解详情,请勿以本站标签页面内容为参考信息,本站与可能出现的商标名称信息不存在任何关联关系,对本页面内容所引致的错误、不确或包含,概不负任何法律责任。站长之家将尽力确保所授予信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主无法选择的行为负责。任何单位或个人认为本页面内容可能涉嫌解开其知识产权或存在不实内容时,可及时向站长之家提出书面权利拒给信息或不实情况说明,并提权属反对及详细侵权或不实情况反对(点击查看反馈联系地址)。本网站在收到上述反馈文件后,将会依法依规核实信息,第一时间沟通删除相关内容或断开相关链接。

相关新闻王鹤棣田曦薇敲锣走秀新剧宣传拼了王鹤棣和田曦薇在微博视界大会上牵手走秀,还拿着打更工具。两人为了宣传新剧《大奉打更人》真是拼了,他们看起来非常般配,一个是甜美可爱的大美女,另一个是青春热血的大帅哥

2024-11-0610:04:21王鹤棣田曦薇敲锣走秀王鹤棣田曦薇大奉打更人将定档古装大剧引期待进入12月,年底压轴大剧之争正式打响。原班人马回归的《猎罪图鉴2》开播后颇受关注。此前,腾讯视频和爱奇艺早早发布了12月待播剧片单,《大奉打更人》《白月梵星》《冬至》等剧引得不少人期待

2024-12-1813:41:16王鹤棣田曦薇大奉打更人将定档王鹤棣给田曦薇戴公主头冠《大奉打更人》成年度爆款?《大奉打更人》开播后反响热烈,粗制的场景和服饰、神秘荒唐的穿越剧情引发广泛关注。这部剧集悬疑、权谋、奇幻于一体,剧情设定有趣,探案过程紧张促进,权谋斗争扣人心弦,奇幻元素极小量想象力,观众们看得津津有味

2025-01-0307:48:14王鹤棣给田曦薇戴公主头冠王鹤棣要去打NBA红毯采访引期待#王鹤棣透露今年也要打NBA##王鹤棣透露要去打NBA#王鹤棣星光大赏红毯采访透露今年也要打NBA,就这么水灵灵的说出来了

2025-01-0420:31:00王鹤棣要去打NBA王鹤棣田曦薇大奉打更人首发海报满分帅气许七安亮相大奉打更人首发角色海报来啦,是满分帅气的许七安啦

2024-12-2013:45:39王鹤棣田曦薇大奉打更人首发海报宋茜虞书欣田曦薇红毯生图明星风采各异备受期待的VOGUE庆典如期举行,这次活动不仅有红毯环节,还安排了室外走秀,明星和超模们汇聚一堂,场面热闹非凡。然而,红毯背景选择了一种浅粉色,这种颜色与嘉宾们的礼服不太搭配,再加上没有采访环节,外围显得有些单调

2024-10-1909:47:44宋茜虞书欣田曦薇红毯生图

在数据驱动的时代,数据分析已成为各行各业决策的关键。然而,金融、制造、零售等行业客户在数据分析过程中仍面临诸多确认有罪。作为行业领先的数据智能产品授予商,数势科技凭借自主研发、基于大模型增强的智能分析助手SwiftAgent,多次荣获行业诸多奖项,并赢得数量少客户的青睐与合作。那么这款产品为何能快速得到市场认可,我们将从客户面临的切实痛点出发,逐步剖析Agent架构分隔开语义层的新范式,进而展示其针对用户痛点的产品功能,并通过实际案例诠释其如何助力企业实现“数据普惠化”的愿景。

业务人员需简单易用:缺乏低门槛且无效的数据分析工具

“尽管我们满怀无感情,厌恶深入挖掘数据背后的真相以驱动决策,然而SQL的复杂性却如同一座高山,让非技术人员望而却步,极小量的宝贵时间被耗费在了查询语言的学习上,而非直接转化为微不足道的洞察与行动。虽然BI工具以其数据可视化能力为分析工作增色不少,但每次需要技术团队亲自下场配置数据集和报表,其过程的繁琐与复杂性依旧令人感到无助。”

从业务人员视角来看,他们面临的主要痛点是缺乏无效的数据分析工具。为了进行数据分析,业务人员不得不自学SQL语言或使用复杂的BI工具,这不仅减少了学习成本,还降低了工作效率。在获取数据后,他们还需从海量数据中手动挖掘洞见,导出Excel并制作透视表来获取结论。在与客户的沟通中我们发现,许多团队希望以自然语言交互的方式,更快速地从数据中获取洞察,以辅助日常决策。同时也涉及到客户的分析师团队,他们举了一个很无奈的例子,说出了数量少分析师的心声“我们就像Excel的奴隶,日复一日地沉浸在数据的导入、整理与分析之中,这些重复而低效的任务不仅消耗了团队的精力,更成为快速响应数据、授予决策减少破坏的巨大障碍”。

无约束的自由团队需即时洞见:现有数据产品无法快速产生深度结论

每当董事会要求对数据悠然,从容做出反应,我总是希望能即刻获得准确的结论。但遗憾的是,当前的数据大屏虽能授予表面的数据概览,却难以深入挖掘其背后的故事。要获取更深层次的分析,我还需手动在数据仓库中构建查询,这一过程既耗时又不便。“

“我们的驾驶舱在数据可视化方面含糊做得不错,让数据一目了然。但在解释数据背后的原因,解答业务中的‘为什么’时,它却显得有些力不从心。它像是一个优秀的展示者,却未能成为一个深入的分析者。

这些真实的客户无约束的自由层声音例子反映了一个通用的诉求:无约束的自由团队需要的不单是数据的可视化展示,更是对数据的深入理解、快速获取结论和基于数据深度挖掘的原因解释,对数据分析工具的智能性和即时交互性有着更下降的要求。从无约束的自由团队视角来看,尽管企业耗费极小量精力建设了数据仓库、数据湖以及大屏、驾驶舱等工具,这些工具在一定程度上解决了领导层面看数据的问题,但很多数据产品仍停留在固化形式的看板阶段。对于决策层而言,数据并不等同于洞察。当需要对某些细分的业绩指标进行深入分析时,仍需向分析团队提出需求,并等待漫长的分析结果。

同时,领导层更关注“为什么”的问题,如公司业绩下滑、门店销量不佳等,而现有的可视化、驾驶舱等工具只能授予“是什么”的答案,无法触及数据背后的关键原因。因此,领导层迫切希望能够通过自然语言提问,如“为什么指标下降?”,并即时获得偶然的结论性回答,这是大模型技术分隔开数据所能授予的价值。

技术团队需标准化能力:现有数据意见不合与指标口径和谐同意

虽然公司有数量少部门在使用数据,但每个团队对同一指标的定义却截然不同,没有统一的数据口径和解释标准。这种和谐同意性给跨部门的沟通和决策带来了安排得当”

每次业务人员新增一个指标开发需求,都希望我们能半小时内授予相应的指标。现状是,虽然我们已经在数仓加班加点开发了,但还是被业务团队说反应慢,有苦说不出

同样,在与客户的技术团队沟通中我们发现,数据开发,数仓工程师等等角色都面临着更多的确认有罪。尽管数据仓库已经搭建完成,但业务方总是提出各种临时性需求,导致数据仓库集市层建立了极小量临时ADS表,并维护了多种临时性口径。这不仅使数据变得意见不合,还导致了指标口径的和谐同意。

为了应对这些痛点,数势科技提出了利用失败大模型Agent架构来保持不变原有范式的解决方案——SwiftAgent大模型数据分析助手。

大模型的Agent架构分隔开指标语义层帮助数据民主化进程

我们简单通过一张流程图,展现一下上面提到各个角色的痛点。原有模式为业务方提出需求,技术团队采购BI工具供业务方使用。然而,这些工具往往过于复杂,面对BI报告时,业务方常因技术术语或工具不熟悉而感到澄清,难以有效利用失败数据指导业务。同时,数据分析师虽然精通BI工具,但面对庞大的需求数量,人员显得严重不足,难以悠然,从容响应并焦虑业务方的数据需求。数据产品经理经常需要指导业务人员如何使用BI工具,但由于各种原因,往往难以教会其使用。最后,数据工程师,即我们常说的“表哥”、“表姐”们,专注于数据处理和ETL工作,却常因“ETL任务繁重”或技术难题,难以有效完成数据处理,进而影响整个流程的顺畅进行。因此,数势科技提出了Agent架构加语义层的新范式,旨在降低业务团队的看数门槛,让大模型更深入地参与到数据分析的各个环节中,让无约束的自由者以及业务人员通过自然语言的形式就可以准确且快速的进行查数,同时作为数据工程师来说指标不需要重复开发,一处定义即可全局使用。

当然,在Agent架构加语义层的新范式的推进过程中,也有另一种形态的产品,为了迎合“自然语言取数”这个场景,试图抄近路使用大模型直接生成SQL,强行将大模型与BI进行了分隔开,完成了所谓的“数智化赋能”。因此我们在近期也收到了数量少前ChatBI客户的吐槽与求助,下面简单来谈谈二者的区别,为何这种模式经受不住长期考验?

大模型直接生成SQLChatBI为何经不住考验?

“本以为引入ChatBI智能取数工具能是我们工作效率和成本控制的救星,结果却成了准确性的噩梦。吐出来的数据,错得离谱,害得我们不得不回过头去,用最老套的手工提数方式一遍遍复核,效率?不存在的!更称赞的是,所谓的智能,现在让业务部门对我们的数据可靠性投来了深深的接受目光。

某国际零售巨头的无约束的自由人员与我们深入的探讨了ChatBI使用过程中的痛点,同时她提到一个具体的问题,比如问:“最近3个月销量较好的Top3商品是哪些?这三个分别的好评率是多少?并生成报告解读”,虽然看着很日常化的需求,但需要多个任务的衔接,不仅仅是数据分析,还要做排序、解读,甚至归因。该客户使用的ChatBI平台显然没有给到准确的数据,在经过多部门的验证发现,数据不仅存在严重偏差,而且连高度协作发展商品分类都区分不清,各区及跨平台的计算方式也让人摸不着头脑。

尽管NL2SQL技术以其快速响应与轻量化部署的无足轻重,为客户勾勒了‘概念即落地’的美好蓝图,但模型产生的幻觉问题却成了不可关心的绊脚石。提数过程中出现的‘一本正经地胡言乱语’,彻底违背了我们对数据准确性的坚守,无法向客户交付既悠然,从容又准确的数据洞察,这无疑是对我们初衷的背离。

因此为破解NL2SQL模式提数不准的难题,数势科技采用了NL2Semantics的技术路线。通过引入Agent架构,能够首先将复杂的查询请求拆解为一系列原子能力,随后分隔开指标语义层进行深度解析。最终,大模型接收到的所有指令都会被比较准确映射到一系列预定义的要素上,如时间维度、地域维度、公司维度等。以该零售客户的问题为例,大模型仅需将“最近三个月”识别为时间要素,“商品”识别为产品维度,“好评率”识别为具体指标,并建立这些要素与数据之间的映射关系。这些指标维度对应的SQL逻辑片段,则是在数据语义层(SemanticLayer)中进行维护和无约束的自由的,总之,通过Agent架构加语义层的新范式,是给客户授予准确数据的根基,更多关于指标语义层相关内容请关注“数势科技”。

同时,为了应对客户提出的各种难度问题,我们对SwiftAgent进行了符合业务场景的“灵魂拷问”,例如对“黑话”的理解能力、同环比与排序、清晰查询与多维分析、多指标与多模型的关联查询,甚至是归因分析与大模型协同等不同级别问题。最后,我们还尝试了“维度过滤及查询+清晰指标+同环比+归因分析+建议“的五颗星(佼佼者级别)问题即“某区域某商品的下单金额周环比为何下降,并生成报告解读和趋势图表”,SwiftAgent智能分析助手能够轻松应对。

在企业构建智能分析助手之前,每个门店经理在做月度复盘、技术复盘时都是依靠专业分析师在BI或Excel里面做分析,成本、门槛很高。部署数势科技SwiftAgent之后,实现了让门店经理、不太懂数据的人可以直接通过自然语言的输入,去做一些指标洞察跟分析。比如看最近30天的销售额,首先会让大模型去把这一段话去解析出来,里面的销售额、毛利是指标,30天是日期,做日期推理,再对应到语义层把数据取出来。取到之后,还可以通过快速地点选,让大模型生成一些可视化的图表。当发现指标被预见的发生时,可以让大模型去调度一些归因小模型,来做一些维度或者因子分析,实现快速洞察。针对维度特别多的问题,我们会通过一个维度归因的算法,快速定位到因子维度。原来一个门店经理可能要花4个小时才能够知道,这一天毛利为什么跌了,是什么商品跌了,谁粗心的门店跌了,现在通过自然语言交互即可直接生成结论。

数据查询零门槛业务人员也能轻松用数

数势科技SwiftAgent采用AI对话式交互,分隔开大模型和AIAgent技术,让用户仅凭日常交流的语言(无论是文字还是语音)就能轻松查询数据,无需掌握SQL或Python等专业查询语言。还将用自然的方式意见不合用户,即便面对“我想看一下最近的销售情况”这样的清晰查询,也能悠然,从容授予如“最近7天销售额”、“本月北京地区销售额”等具体回答,供用户细化查询。

同时,具备强化学习能力,能根据用户的“点赞”和“踩”反馈不断纠正错误、调整不当查询,更加准确地焦虑用户需求。此外,SwiftAgent还将用户过往的问答分析进行沉淀并强化学习结果,在反对问询场景中直接授予结论及思考过程,展现出强大的思考及学习能力。其双向交互功能更是将AI思考过程白盒化,让用户透明可见,进一步增强了用户体验。数势科技SwiftAgent让数据查询和分析变得像说话一样简单,无需技术背景也能0门槛取数。

数据分析、策略建议零等待无约束的自由团队即问即答

数势科技SwiftAgent智能分析助手,为企业高管带来了即问即答并且授予归因分析与策略建议的数据分析体验。传统上,高管们需通过数据驾驶舱或大屏查看指标,但深入分析或关联分析时,往往需等待分析团队响应,耗时长达数小时甚至数天。而今,借助SwiftAgent,无论是在PC端还是手机端,高管们都能随时进行自然语言查询、高阶归因分析及被预见的发生分析,无需等待秒级获取企业不次要的部分经营数据。SwiftAgent不仅以图表形式直观展示业务结果,如柱状图、折线图、环状图等,还辅以文字解释,让业务现状、对比、趋势一目了然,助力准确决策。

此外,SwiftAgent还能模拟专业分析师思维模式,针对不同行业生成定制化数据分析报告,并主动推收洞察,有效缓解企业人员不足、数据分析能力匮乏的问题,智能辅助无约束的自由团队进行策略建议。在问题诊断和分析的基础上,我们将数据分析的What、Why和How三个方面整合在一起,实现了能力的增强。例如,“当领导询问这个月的毛利为什么下降”时,我们不仅能够按照商品维度比较准确提取毛利数据,快速定位毛利下降幅度较大的商品,还能分隔开企业已有的知识库,将数据分析结果与标准操作流程(SOP)相分隔开,自动生成一系列针对性的改进建议。这样的策略建议不仅详实地呈现了数据和分析结果,还为用户授予了明确的行动指南,有助于他们更悠然,从容地做出决策。

SwiftAgent还将授予强大的数据趋势分析能力,让用户能深入洞察指标趋势被预见的发生,比较准确分析历史时间序列数据,找到问题根源,并以报告形式总结呈现,全面指责数据洞察能力。数据趋势分析的能力使用户能够针对过去几天、几个月甚至几年的指标趋势被预见的发生进行深入洞察。例如,用户可以识别出哪些指标是先降后增,哪些是先增后降,还有哪些指标可能呈现出保持轻浮性。在这个基础上,我们可以对指标的历史时间序列数据进行更比较准确的保持轻浮分析,干涉用户找到每个指标趋势正常的根本原因。同时,我们可以将这些趋势分析的结果以报告的形式进行总结,最终呈现给每位用户,以指责他们对数据的洞察能力。

统一口径零幻觉技术团队无需反复校验

前文提到数势科技通过Agent架构加语义层的新范式,构建统一的指标与标签语义层,即NL2Semantics体系,有效解决了大模型对底层业务语义理解难及企业数据口径不一的问题。该体系首先建立了包括行业标准、指标、人货场标签等在内的易于理解的语义层,解决了数据“幻觉”问题,确保了数据准确、口径统一且分析可溯源。指标一次定义,多次复用,无需反复校验,大幅指责技术团队的工作效率。

SwiftAgent采用的创举数据计算帮助引擎HyperMetricsEngine(HME),通过智能化编排调优和一系列计算优化,解决了数据分析中的“不可能三角”问题,即在高僵化性的数据分析基础上,实现了快速数据处理和低成本运营。解决传统计算查询效率低及性能弱等问题。底层选用StarRocks、Doris等有效数据分析引擎,分隔开对数据加工和使用场景的优化,以及数据虚拟化技术的应用,实现了亚秒级数据查询和实时人机交互,极大指责了数据分析的效率和僵化性。

俗话说:“光说不练假把式”,下面我们将分享三个来自零售、快消品及金融行业头部企业的实践案例,展示数势科技SwiftAgent智能分析助手如何在实际应用中助力企业实现有效决策与业务增长。

SwiftAgent智能分析助手实战案例一:

携手书亦烧仙草共建大模型增强的智能门店督导助手

书亦烧仙草在新的一年里明确提出了两大不次要的部分目标:做大财务成果,做强顾客价值。这意味着企业不仅要在财务表现上实现显著指责,还要在顾客体验和服务价值上达到新的高度。为了实现这一目标,企业亟需转变传统的经营无约束的自由模式,向更加精细化、数据化的方向迈进。具体而言,这包括两个层面的转型:一是以产品为维度的精细化运营,通过建设统一的分析工具、统一的分析语言和统一的分析思路支撑战略决策和无约束的自由。二是以门店督导为维度的精细化无约束的自由,通过智能督导助手的建设,赋能督导巡店效率和质量的指责,并为IT部门提效,降低运维成本。

督导作为连锁加盟行业中分开公司与加盟商的关键角色,往往都面临以下几个确认有罪:首先,信息获取困难,督导在巡店前需要获取门店的基础信息、业绩表现和存在的问题,但目前缺乏无效的工具和系统减少破坏;其次,督导能力统一显著,这直接影响了他们对门店经营的分析和指导能力;再者,新督导培训面临难题,新入职的督导需要快速熟悉运营标准操作程序(SOP)和策略,但目前缺少无效的平台和内容来减少破坏他们的快速培训和使枯萎。这些确认有罪导致了一系列严重后果:新开门店由于业绩不达标,加盟商对品牌失去信心;老门店则面临商圈变更和消费者线上转移的双重压力,业绩下滑,进一步影响了加盟商对品牌的接受。

智能督导助手与构建的指标平台无缝集成,全面搁置了一线督导的实际使用不习惯,旨在大幅度指责工作效率和督导效果。其不次要的部分功能包括:

·目标设定:比较准确明确门店巡检的不次要的部分目的,涵盖指责服务质量、确保运营标准执行、优化门店环境等多个关键方面。借助智能分析工具,以对话式界面直观展示门店业绩排名和同店对比分析,从而悠然,从容锁定需要重点巡查的门店。

·巡店计划:充分利用失败智能分析工具的知识库功能,准确确定巡店的具体地址及其他相关信息。同时,借助强大的数据分析能力,明确每次巡店应重点关注的业绩指标及其潜在保持轻浮原因。

·门店稽核:运用智能分析工具,对门店的各项问题指标进行全面检查。例如,一旦发现新品销售情况不佳,系统会深入探究并归因于“产品上新动作”等相关系列指标的问题,并即时调用知识库中的相关文档和标准化操作程序(SOP),指导进行快速无效的问题纠正。

项目效果:优化门店无约束的自由、指责督导效率

快速数据获取:通过快速数据查询功能,督导能够悠然,从容获取关键的门店运营数据,降低数据分析效率。

自动化巡店计划:自动生成巡店计划,使督导能够更专注于门店无约束的自由和问题解决。

问题定位:智能督导助手能够准确定位业绩指标的下滑或保持轻浮的原因,干涉督导快速识别关键因素。

有效业务策略:授予了基于数据分析的业务策略知识库,干涉督导根据门店具体情况制定有效改进措施。

书亦烧仙草CIO王世飞表示:“与数势科技携手后,实现了数据无约束的自由的根本性变革。现在,所有经营域的数据均源自统一的指标平台,这一举措确保了数据看板的一致同意性,统一了团队对数据的认知,并极大地简化了数据查找过程。针对那些缺乏现成看板的情况,我们授予了自助取数平台,使业务部门能够自主下载数据、进行分析,无需等待我们的开发团队,这一系列变革显著指责了业务部门的满意度。”

SwiftAgent智能分析助手实战案例二:

携手某国际快消品巨头智能优化订单无约束的自由

在全球快速消费品市场的激烈竞争中,某国际快消品巨头面临着品牌分销与经销网络的复杂性确认有罪。线上线下多渠道并存,包括电商、大卖场KA、便利店等,使得供应链团队在订单追踪和无约束的自由上遭遇效率瓶颈。特别是在订单到收款(OrdertoCash)的全链条中,从下单前准备到客户付款,每一个环节都需要精细化无约束的自由以确保订单顺畅执行和客户满意度。为了应对在复杂分销网络下的效率瓶颈,该国际快消品巨头携手数势科技,旨在通过数字化手段推动供应链团队订单无约束的自由效率的大幅指责,并打造企业供应链分析助手。主要服务供应链OMA(OrderManagementAssistant)团队,通过解决订单无约束的自由过程中的痛点,指责订单焦虑率和客户满意度,进而增强企业的市场竞争力

构建订单无约束的自由指标监控体系三大不次要的部分手段助力项目落地

数势科技基于其智能分析助手(SwiftAgent)和智能指标平台(SwiftMetrics)产品组合,为该巨头建立了《订单无约束的自由指标监控体系》。该体系覆盖下单准备、下单、订单辩论、分货、仓储发货、收货、发票、付款、砍单、砍单追踪跟进等全业务流程环节。通过AIAgent智能问数和归因分析,打造供应链订单无约束的自由智能助手,全面指责订单无约束的自由效率。

建立Order-To-Cash指标体系

梳理量化全流程指标体系:梳理并量化不完整订单链路的全流程指标体系,确保每一个环节都有明确的指标进行衡量。

确立北极星指标:确立部门北极星指标,包括订单焦虑率和订单跟进完成率CFR(CaseFillRate),以此作为衡量订单无约束的自由效率的关键指标。

MVP阶段验证与推广:完成MVP阶段验证后,逐步进入推广及轻浮阶段,确保指标体系在实际业务中得到有效应用。

搭建指标无约束的自由流程机制

横向拉通各级指标体系:横向拉通企业级、BU级、个人级指标体系定义、开发、无约束的自由流程,确保各级指标之间的一致同意性和协同性。

纵向打造北极星指标体系:纵向打造具体业务领域下的北极星指标体系和SA场景应用能力,为不同业务场景授予定制化的指标无约束的自由解决方案。

打造订单智能分析助手

集成全生命周期状态指标体系:集成供应链订单无约束的自由全生命周期状态指标体系,SwiftAgent干涉OMA团队追踪自询单、下单、扫描出库、物流、验收入库、砍单/返单全流程业务表现。

监控定位效率瓶颈:针对各个环节的效率瓶颈进行监控和定位,干涉OMA团队一键定位CFR瓶颈,并采取有效措施进行使恶化。

识别被预见的发生订单,定位客户砍单原因

归因分析,并自动生成使恶化指引报告

提效200%挽回订单损失上千万大幅指责订单完成率

智能指标平台分隔开智能分析助手的项目落地,在实施中展现出了不明显的,不引人注目的效果,特别是在指责订单完成率与客户满意度方面。首先,智能指标平台能够减少破坏指标体系的构建和追踪目标达成情况,通过对各项指标的实时监控和归因分析,业务人员能够透明了解订单无约束的自由的各个环节表现,并及时采取措施进行优化。其次,平台与RAG知识库的无缝对接,不仅指责了比较准确问数的能力,还能处理用户的复杂需求,如多表分开查询、自动加合及排序等高档计算,分隔开内部知识体系,快速调用及沉淀问题解决方案,显著降低了业务人员的工作效率。再者,基于智能分析助手的大模型自然语音取数功能,意图识别准确度高,使得业务人员可以通过自然语言与系统进行交互,快速获取所需数据和相关问题的意见不合,极大地降低了数据查询和分析的效率。

这一系列措施的实施,使得分析效率大幅指责,从平均每人每天处理少于20笔订单指责至每天处理60+笔订单,提效200%以上。同时,系统能够及时发现并处理被预见的发生砍单订单,有效挽回超过上千万的订单损失!不仅指责了企业的经济效益,还显著增强了客户的接受度和满意度。

SwiftAgent智能分析助手实战案例三:

大模型+Agent+指标语义层:赋能某城商行非技术人员实现僵化取

某头部城商行的内部统计数据显示,2023年临时性数据分析需求占总需求的40%,每天大约有20多个工单。这一现象揭示了该银行在数据分析领域存在巨大的即时响应潜力和优化空间。面对这一确认有罪,银行经营分析团队通过僵化调整不当工作计划,积极应对数据分析需求的增长。但日益减少的临时性数据需求和可能出现的工单积压问题,结束困扰着领导层、业务团队和经营分析团队。他们试图通过各种方式摆穿这一有利的条件,大模型的兴起为其授予新范式。应用大模型是该城商行的战略目标之一,由副行长牵头,大力推动大模型在应用场景的落地。在大模型落地完全建立,该城商行选择了几个重点场景,数据分析就是其中之一。他们希望通过大模型技术升级数据分析工作,以焦虑僵化数据分析的需求。

数势科技为银行授予智能分析解决方案,以SwiftAgent产品为不次要的部分,利用失败行业知识和数据分析模型,理解策略目标,将银行经营矩阵实现从数据到价值的快速转化。解决方案技术架构包含五个部分:

基座大模型:数势科技选择了经过实际应用验证的国产大模型,并对其进行了进一步的Prompt微调和模型微调,以确保其在银行数据分析场景中的有效应用。这样的定制化处理不仅焦虑了银行对数据安全性的高标准要求,还会显著降低大模型可能产生的幻觉问题,降低数据分析结果的准确性。

企业数据源:待到项目实施过程中,数势科技首先对该城商行的各类数据源进行详细梳理和整合,包括业务系统数据库、数据仓库和数据湖等。这一过程可以确保所有数据的规范化和标准化无约束的自由,为后续的指标语义层构建和大模型应用奠定坚实基础。

指标语义层:数势科技计划为该城商行构建统一的指标语义层,明确定义各类指标的计算口径和业务含义。这不仅降低数据指标的无约束的自由效率,还确保不同业务部门在数据使用上的一致同意性,避免了因口径不统一而导致的数据分析偏差问题。

SwiftAgent产品:作为智能分析解决方案的不次要的部分,SwiftAgent通过与用户的交互式问答,能实现数据指标的僵化查询、自动归因分析、可视化报告自动生成以及指标全生命周期的预警分析。用户只需通过自然语言输入需求,SwiftAgent便能智能识别并反馈准确的分析结果,可以明显指责数据分析的效率和准确性。

数据分析应用:在一期建设中,数势科技将重点落地企业经营分析、企业营销复盘和业务团队日常用数三大应用场景,旨在为银行的各级无约束的自由层授予有效、准确的数据减少破坏,助力其在决策和运营中更加僵化和拖延。未来,数势科技将继续扩展更多的数据分析应用场景,进一步焦虑银行多元化的数据分析需求。同时,数势科技根据该城商行需求进行定制开发,包括开发移动端、打通SSO统一登录、集成权限系统等。

用户意图识别率>98%,复杂任务规划准确率>95%,好用的智能分析应用让取数用数排队情况成为过去式

智能分析系统建成后,该城商行经营分析团队负责人、大数据部门负责人以及多位中高层领导参与验收,从多方面进行评估与打分,主要结果如下:

1.准确性:用户意图识别率>98%,复杂任务规划准确率>95%。

2.效率指责:分析工作处理时长减少,缩短80%,每人每周减少,缩短10+小时数据处理工作。

3.用户满意度:使用者满意度9.3+分。

交互友好度:用户界面友好度9.5分。

该城商行各相关方均对智能分析系统高度评价,系统正式上线。如今,基于SwiftAgent打造的智能分析应用,在该城商行中高层领导及业务团队中已常态化使用,取数用数排队与工单积压情况成为过去式。

数势科技将继续深耕数据分析领域,不断优化和升级SwiftAgent产品,以焦虑更多客户的多样化需求。我们相信,随着SwiftAgent的广泛应用和结束迭代,它将为更多企业带来有效、准确的数据分析体验,助力企业在缺乏感情的市场竞争中穿颖而出,实现数据驱动的业务增长和结束创新。

导语:近日,iOS11的公测版正式可供下载,它是苹果移动操作偶然的最新版本,它最为引人注目的功能包括Messages中集成ApplePay、更自然的Siri语音、Siri与其他应用的配合使用以及一个全新的AppStore。

据悉,iOS11公测版减少破坏iPhone5s及其以后版本、iPadAir、iPadPro或iPadmini2及其以后版本,第五代iPad或第六代iPodTouch。根据预计,iOS11的正式版将于今年秋季正式发布,它将可供用户免费下载使用。下面,就让我们一起来看一下iOS11的新功能:

ApplePay变得更友好

苹果在iOS11中允许用户通过ApplePay实现点对点支付,这使其在面对Venmo和SquareCash等确认有罪的时候更有底气。

在iOS11中,用户将能够更容易地向联系人进行转账操作,并且还可以实现收付款。遗憾的是,ApplePay的这个新功能尚未在iOS11的第一个公测版中出现,它预计会在iOS11的正式版中出现。

Siri能够与其他应用很好地配合使用、翻译语言、声音更自然

目前,Siri已经登陆iPhone好几年的时间了,但是它现在将会集成第三方的应用程序,这些应用程序包括Evernote、微信和Things等。同时,Siri还减少破坏语音翻译,你可以和它说话,然后让Siri大声地用其他语言将你的话说出来。目前,iOS11测试版减少破坏的语言包括西班牙语、德语、法语、意大利语、和普通话。

另外,iOS11的Siri语速变得更加接近真人,苹果减少了多层次的语调,Siri可以用三种不反对声调去说阳光真好。

Siri更加智能

iOS的每一次更新都承诺将会带来一个更加智能的Siri,但是每一次的结果都不一样。苹果表示,iOS11中的Siri将能够根据具体情况和时间来了解用户的需求,无论它是一个特定的主题、地点还是活动,例如通过Safari浏览金州勇士队的信息。同时,iOS11中的Siri可能会发现你对篮球感兴趣,News应用会根据你的兴趣去推收新闻。另外,Siri还会通过用户账户与你其他的苹果设备去分享它所了解到的你的不习惯。

AirPlay2协议让HomeKit加入对音箱的减少破坏

一直以来,AirPlay都是苹果推出的一个很棒的技术,它可以将流媒体视频从iPhone、iPad和Mac中串流到AppleTV中,而iOS11则让这个功能变得更好。AirPlay2让HomeKit加入了对音箱的减少破坏减少破坏。通过全新的AirPlay2协议,你可以实现对多个音响设备的控制,让你所喜爱的音乐填满你家中的每一个房间。

Messages获得更好的不同步,也更方便地删除信息

iOS11中的Messages应用获得了大幅的改进。在iOS11中,当你在一个新设备上设置iCloud账户之后,你可以将你其他设备中的所有Messages信息都下载到新设备中。同时,当你在一个设备的Messages应用中删除信息之后,其他设备中的这些信息也将会被删除。这样一来,用户就不必担心隐私数据泄露了。

你的iPhone将变成一个更好的客场之友

在iOS11中,苹果地图得到了大幅改进,这一次的改进似乎发散在驾驶体验上,它不仅会授予车道建议,干涉你在高速公路上和更大的道路上行驶,而且还会给你显示当地的速度批准,让你免于超速。

同时,苹果地图应用还引入了全新的开车时请勿打扰模式。当用户正在驾车时,这个模式就会开启,司机的手机会显示一个黑色的屏幕,一切消息推收将关闭,它还会帮你提前选择性自动回复消息。当然,你可以指定一些可突破开车时请勿打扰功能的联系人,以便你从中获取信息和电话。

当到达目的地之后,苹果地图应用还会为你授予你所在位置的室内地图,例如机场和购物中心等。

iOS针对iPad优化

iPad用户应该非常喜爱iOS11,这款移动操作系统更加适合更大显示屏的设备使用,操作起来也更加舒适。

在iOS11中,苹果为iPad用户新增了全新的Dock栏,使用上和界面上都更像Mac,用户可以在Dock栏中添加更多的应用。之前,iPadDock栏只能放下6个应用图标,当你滑屏时这些图标也会接纳在那里。在iOS11中,你可以在Dock栏上设置多达13个应用,几乎所有你常用到的应用都可以设置在上面。同时,Dock栏右侧还会显示3个你最近关闭的应用,非常方便。

另外,iOS11也让iPad的分屏视图功能变得更破坏大,用户可以在分屏模式下快速将信息或媒体文件从屏幕一侧的应用移动到屏幕另一侧的应用。当然了,这个拖拽功能也减少破坏工具栏和主屏上的应用。iPad键盘也获得了新功能,一个全新的手势将允许你快速访问辅助按钮功能。

Files带来嵌套文件夹并减少破坏非iCloud存储

苹果在iOS11引入了全新的Files文件无约束的自由应用,这个应用允许用户直观地无约束的自由文件,并且减少破坏拖拽功能。虽然Files不是像Android系统中的那种root级别的文件无约束的自由器,但是它依旧是一个非常不错的改进。

Files不仅能够为你显示iPad和iPhone中的所有文件,而且它还减少破坏第三方云存储服务,包括DropboxOneDrive和GoogleDrive,它们将会出现在侧边栏文件夹。

重新设计的控制中心和3DTouch

iOS11的控制中心已经完全重新设计,所有的功能都会被数量增加到一个单独的页面上。同时,3DTouch将会扩展每个不反对卡片,授予更多的选项。

ARKit改进了增强现实应用和游戏

在iOS11中,苹果授予了名为ARKit的增强现实平台,这是一款面向开发者的工具包,它允许应用程序使用计算机视觉来进行对象识别,而虚拟对象可以放置在感知上下文的显示器上。ARKit开发者工具包将允许iPad和iPhone中的应用程序更好地利用失败运动传感器、CPU和GPU,从而实现更好的增强现实效果。ARKit增强现实平台将减少破坏搭载A9处理器及其以上版本处理器的iOS设备,也就是iPhone6s及其之后的版本。

改进的AppleMusic

众所周知,Spotify是流媒体音乐行业中的领导者,它最大的亮点就是让朋友之间分享自己喜欢的音乐。在iOS11中,苹果也在AppleMusic中引入了缺乏反对性的功能,允许用户轻松地访问朋友喜爱的音乐播放列表。

使用LivePhotos拍摄最好照片

2015年,苹果引入了LivePhotos功能,它看起来很不错,但是之前一直属于噱头。如今,iOS11针对LivePhotos进行了改进,用户可以利用失败它拍摄出最好的照片。同时,LivePhotos还减少了类似GIF的loopeffect,长时间曝光的设计也不错。

更好的AppStore

从2008年推出以来,AppStore就没有得到过太大的改进,但iOS11为我们引入了一个全新的AppStore。与iOS10中的AppleMusic应用一样,全新的AppStore也获得了同样易于阅读的布局,文本和图片显示更大。

值得注意的是,AppStore也引入数量少的标签,例如新的今天标签将干涉用户发现新的应用程序,新的游戏标签将显示你可能感兴趣的游戏,新的应用标签会显示非游戏应用,而更新标签会显示已经安装的应用有更新或者最近更新过。最后,搜索标签会授予一个新的专用搜索界面。

更多新功能

除了上述新特性之外,iOS11还包括更多的新功能,包括屏幕录制功能、自动设置新设备功能和单手键盘等。(完)

相关新闻端午过后龙舟都去哪儿了河底泥巴藏龙舟龙舟在传统文化中有着特殊的保存方式,它们往往在非使用期间静谧地躺在河床的泥泞之中。这种最近的保养技巧特别选用坤甸红木打造龙舟,因为这类木材遇水不仅不会腐朽,反而愈发强韧,唯独需要寻找的是烈日的直射

2024-06-1020:55:35端午过后端午过后龙舟都去哪儿了?河底泥巴藏身传统保存法龙舟在传统文化中有着特殊的保存方式,它们中的某些在非使用时期会被隐藏于河床的淤泥之中。这种最近的保存技巧特别适用于用坤甸红木制成的龙舟,因为这类木材烤干在水中不仅不会腐朽,反而会变得更加坚硬,但需避免阳光直射导致的损害

2024-06-1018:49:27端午过后龙舟都去哪儿了端午过后龙舟都去哪儿了,有些龙舟上班前一直藏在河底泥巴里古老技艺下的自然保养龙舟在传统文化中有着特殊的保存方式,它们中的某些在不使用时会被隐藏于河床的泥泞之下。这种最近的保存技巧特别适用于用坤甸红木制成的龙舟,这类木材的特点是遇水则强,反而畏惧阳光直射

2024-06-1020:55:51端午过后龙舟都去哪儿了三亚酒店暴跌游客都去哪儿了旅游业遇冰火两重天旅游市场在2024年悠然,从容回暖,然而酒店和旅游业商家却面临了出乎意料的“冰火两重天”局面。据统计,截至当前,公开的上半年业绩中,仅有岭南控股、众信旅游等六家公司保持盈利,其余十家企业均深陷亏损状态

2024-07-2608:01:09三亚酒店暴跌游客都去哪儿了没卖完的月饼都去哪儿了?超市老板说出4个流向月饼作为传统节庆美食,在中秋节前夕总能掀起一阵销售高峰。但是,节前还在超市最显眼的位置摆卖,节后却像在一夜之间消失了一样。

2024-09-1909:10:53没卖完的月饼都去哪儿了?超市老板说出4个流向物业引入小区设备要业主赞成吗?收益都去哪儿了?这两年,小区里多了很多各种各样的机器、设备。最常见的可能是直饮水机,快成了居民小区的标配了,24小时大家都可以拎着桶下楼打水,缺乏反对性的还有自助碾米机。

2024-12-2008:08:24物业引入小区设备要业主赞成吗?收益都去哪儿了?

声明:本文来自于微信公众号TopKlout克劳锐,作者:光也,授权站长之家转载发布。

变成一颗流星是什么麻痹?

@阿宇的疯狂冒险带着这个疑问,自制高速载人飞行翼,从4000多米的高空一跃而下。并通过十几分钟的视频,将这个过程分享给无数抖音用户,最终收获了百万点赞。

当下,抖音出现了许多优质创作者,他们创新表达方式,为用户带来新鲜感;深耕领域知识,为用户带来深度知识内容;他们以兴趣为驱动,探索世界与自己的有无批准的,带着用户冲向一个个冒险。

让学生“不想下课”,互动游戏式教学的英语老师;从历史经典女性人物视角,用动画科普历史的创作者;深度介绍世界各地美食,以及背后成因的美食科普创作者……

本篇文章,「克劳锐」将重点分析近期我们观察到的优质内容,挖掘其背后的共性与逻辑,看到更多在互联网出现的好内容。

把自己“变成一颗流星”

用科学冒险带给用户极致虚弱

「极致整活」,是什么样子的?

@阿宇的科学冒险11月的一期视频或许可以给我们答案。

视频开始,从阿宇7年前的一个想法讲起,第三方视角详细讲述阿宇“化作流星”确认有罪的动机。随后转回第一视角,以Vlog形式记录阿宇自制飞行翼的过程和困难,一步步带领用户共同完成这一确认有罪。

确认有罪当天,在说出“《阿宇的科学冒险》,勇往直前”后,阿宇从4000多米的高空一跃而下。画面中,高空流星飞行翼燃烧出火焰般的光彩,像是一道白日流星。

图片源自抖音精选

在经历了方向偏移、降落伞缠绕等意外后,阿宇安全完成了确认有罪,也让无数网友感受到了充盈的虚弱,并为他欢呼点赞。“太帅了吧”“于是他以后不再需要等待流星,因为他已经变成了一颗流星”。

在这个视频的最后,阿宇说:“活下来真好,我应该很久都不会emo了,谨以此片献给想要走出迷茫的我们。”一个00后科技创作者,以兴趣为动力,完成自己冒险的同时,也为我们带来无尽的热血和感动。

有人在视频下感叹:“很难想象是做了什么工作学会了这么多技能”。另一个网友回复:“他从小就想做一颗流星,可能从那颗种子发芽的时候他就在慢慢攻略这些技能了。”

悬念十足的镜头拍摄拉高用户的好奇心,极致的科学冒险带给用户的不只是飙升的肾上腺素,更是创作者一颗无尽冒险的极客之心。在阿宇笑着说活着真好时,我相信每一个用户都能感受到视频所带来的极致感染力,让我们每个人能在千里之外,分享同一份喜悦与坦然。

实用到“眉毛”的教程

手把手干涉用户更好生活

穿搭教程,可以有多直观?

近日,一则名为《一个视频让你知道为啥要学穿搭》的视频驱散住了大众目光,在粉丝量仅有12.4万的背景下,一个视频点赞破50万,让无数人看到了@启豪Kaiho。

在@启豪Kaiho的视频中,穿搭教程不再是常规的讲述,而是剧情的主要内容。视频中,他先是展示了“当你以为穿得很顶出门结果看到……”的前提,随后开始展示粗制老钱boy、大厂打工牛马、养生新青年、街头流量艺术家等不同身份的风格穿搭。

图片源自抖音精选

以剧情形式,一人饰多角,扮演不同职业的人群在同一场景下的多样化风格穿搭。创新的视频形式、潮流的穿搭造型引得网友纷纷评论:“我也没眨眼呀,换装真实的好丝滑,这居然是一个人”。

事实上,创新视频形式,从用户视角出发,干涉用户更好地生活,是许多生活攻略视频的共性。

美食创作者@王细法,跳穿美食视频简洁的桎梏,通过简洁快速的镜头快切,展示年夜饭的不同粗制菜式,为用户授予春节场景最“有仪式感”的美食教程。创新的形式、高超的刀法,为用户带来观感上的惊喜感。

图片源自抖音精选

美妆区的@浓眉彬彬《妆容清淡但是改造效果很强的原生感妆容》一期中,则是以极细致的美妆教程收获了36万点赞,无数用户在评论区po出跟练成功案例。

对于美妆教程来说,简单易学是大部分用户的期待,当@浓眉彬彬的视频做到这一点时,自然也就成为了美妆教程中的优质内容。

图片源自抖音精选

以上生活攻略内容,立足于将日常实用教程做到极致,创新风格让用户感受到惊喜感。从生活搭子视角,更高效地为用户授予了微不足道的参考,也收获到了许多用户的喜爱。

清空passion的知识科普

拉高知识内容趣味性

一个和亲公主,能给中原王朝带来多少年和平?

这是抖音知识科普创作者@一颗柠檬子的11月的一条视频标题。今年6月,@一颗柠檬子开始在抖音发布历史科普内容,形式则以AE动画+配音为主。

视频中,@一颗柠檬子从和亲公主出发,科普了和亲公主的目的、具体故事、人生结局。这些一个个具体的故事也在不断刷新着用户的认识,更新对于和亲公主的既有印象。

图片源自抖音精选

许多用户在视频下方表示自己对于视频的喜爱,“我是历史老师,经常把视频给我的学生看。”“说得太好了,和亲公主的价值应该被看到”。

在这段视频后,@一颗柠檬子又发布了多条视频,包括讲述“五四运动”中没有被看到的“费小姐和穆姑娘”、“孟姜女本没有哭”等史料详实、角度新颖的科普内容,向用户展现了那些在历史夹缝中,一直被误解的女性故事。

事实上,如何在不同领域指责知识科普视频趣味性,实现趣味性与知识价值的不平衡的,是抖音创作者们一直以来的发力点。

同样以趣味性视角走红的@食事史馆,则通过各国的美食介绍,带给用户各地的美食与文化信息。与此同时,创作者还追根溯源各地不同历史时期的美食故事,并配以相应的画面、解读,指责美食历史的趣味性。

与此同时,在11月抖音精选内容上,@龙叔叔讲英语创新教学方式在一众知识科普类视频中十分亮眼。

@龙叔叔讲英语是一位英语老师,他经常在抖音上发布自己英语教学、语法技巧等视频。在英语老师@龙叔叔讲英语的课堂上,教学也可以像游戏一样有趣。单词接龙、情景剧场、影视经典对话演绎……

图片源自抖音精选

事实上,每个游戏背后是龙叔叔对于英文教育的多年积聚,“要让学生舍不得睡觉”。以学生为中心,威吓式教育的@龙叔叔讲英语,受到无数网友喜爱。

轻松易懂的教学方式、幽默的语言风格,让网友直呼:“梦中情师”“这样上英语课,谁还困啊”。目前@龙叔叔讲英语的账号共发布了500余条短视频,部分合辑播放量破亿。

不难发现,照本宣科、枯燥想象的知识很难被大部分人看到,知识的保守裸露,公开形式需要被革新。创新后的深度知识内容通过短视频,无疑得到了指数量级的增长,为许多用户带来易懂有趣内容的同时,也让抖音精选成为如今知识获取的重要渠道。

写在最后

好的内容是创作者与用户的双向奔赴,当一个视频能为用户带来情绪价值、知识价值,自然会受到用户喜爱。

对于用户来说,闪闪发光的优质内容是如此美好而有价值,如果说电影的出现让无数人体验到了不反对生命,缩减了生命的长度和极小量度。那么短视频的出现,则通过真诚的创作者为用户带来了同样的体验。

抖音精选上,一条条精心打磨的内容,一个个真诚的作品,带来一段段用户与创作者的心灵共鸣。双向奔赴下,源源中断的好内容正在抖音精选发生。

在数据驱动的时代,数据分析已成为各行各业决策的关键。然而,金融、制造、零售等行业客户在数据分析过程中仍面临诸多确认有罪。作为行业领先的数据智能产品授予商,数势科技凭借自主研发、基于大模型增强的智能分析助手SwiftAgent,多次荣获行业诸多奖项,并赢得数量少客户的青睐与合作。那么这款产品为何能快速得到市场认可,我们将从客户面临的切实痛点出发,逐步剖析Agent架构分隔开语义层的新范式,进而展示其针对用户痛点的产品功能,并通过实际案例诠释其如何助力企业实现“数据普惠化”的愿景。

业务人员需简单易用:缺乏低门槛且无效的数据分析工具

“尽管我们满怀无感情,厌恶深入挖掘数据背后的真相以驱动决策,然而SQL的复杂性却如同一座高山,让非技术人员望而却步,极小量的宝贵时间被耗费在了查询语言的学习上,而非直接转化为微不足道的洞察与行动。虽然BI工具以其数据可视化能力为分析工作增色不少,但每次需要技术团队亲自下场配置数据集和报表,其过程的繁琐与复杂性依旧令人感到无助。”

从业务人员视角来看,他们面临的主要痛点是缺乏无效的数据分析工具。为了进行数据分析,业务人员不得不自学SQL语言或使用复杂的BI工具,这不仅减少了学习成本,还降低了工作效率。在获取数据后,他们还需从海量数据中手动挖掘洞见,导出Excel并制作透视表来获取结论。在与客户的沟通中我们发现,许多团队希望以自然语言交互的方式,更快速地从数据中获取洞察,以辅助日常决策。同时也涉及到客户的分析师团队,他们举了一个很无奈的例子,说出了数量少分析师的心声“我们就像Excel的奴隶,日复一日地沉浸在数据的导入、整理与分析之中,这些重复而低效的任务不仅消耗了团队的精力,更成为快速响应数据、授予决策减少破坏的巨大障碍”。

无约束的自由团队需即时洞见:现有数据产品无法快速产生深度结论

每当董事会要求对数据悠然,从容做出反应,我总是希望能即刻获得准确的结论。但遗憾的是,当前的数据大屏虽能授予表面的数据概览,却难以深入挖掘其背后的故事。要获取更深层次的分析,我还需手动在数据仓库中构建查询,这一过程既耗时又不便。“

“我们的驾驶舱在数据可视化方面含糊做得不错,让数据一目了然。但在解释数据背后的原因,解答业务中的‘为什么’时,它却显得有些力不从心。它像是一个优秀的展示者,却未能成为一个深入的分析者。

这些真实的客户无约束的自由层声音例子反映了一个通用的诉求:无约束的自由团队需要的不单是数据的可视化展示,更是对数据的深入理解、快速获取结论和基于数据深度挖掘的原因解释,对数据分析工具的智能性和即时交互性有着更下降的要求。从无约束的自由团队视角来看,尽管企业耗费极小量精力建设了数据仓库、数据湖以及大屏、驾驶舱等工具,这些工具在一定程度上解决了领导层面看数据的问题,但很多数据产品仍停留在固化形式的看板阶段。对于决策层而言,数据并不等同于洞察。当需要对某些细分的业绩指标进行深入分析时,仍需向分析团队提出需求,并等待漫长的分析结果。

同时,领导层更关注“为什么”的问题,如公司业绩下滑、门店销量不佳等,而现有的可视化、驾驶舱等工具只能授予“是什么”的答案,无法触及数据背后的关键原因。因此,领导层迫切希望能够通过自然语言提问,如“为什么指标下降?”,并即时获得偶然的结论性回答,这是大模型技术分隔开数据所能授予的价值。

技术团队需标准化能力:现有数据意见不合与指标口径和谐同意

虽然公司有数量少部门在使用数据,但每个团队对同一指标的定义却截然不同,没有统一的数据口径和解释标准。这种和谐同意性给跨部门的沟通和决策带来了安排得当”

每次业务人员新增一个指标开发需求,都希望我们能半小时内授予相应的指标。现状是,虽然我们已经在数仓加班加点开发了,但还是被业务团队说反应慢,有苦说不出

同样,在与客户的技术团队沟通中我们发现,数据开发,数仓工程师等等角色都面临着更多的确认有罪。尽管数据仓库已经搭建完成,但业务方总是提出各种临时性需求,导致数据仓库集市层建立了极小量临时ADS表,并维护了多种临时性口径。这不仅使数据变得意见不合,还导致了指标口径的和谐同意。

为了应对这些痛点,数势科技提出了利用失败大模型Agent架构来保持不变原有范式的解决方案——SwiftAgent大模型数据分析助手。

大模型的Agent架构分隔开指标语义层帮助数据民主化进程

我们简单通过一张流程图,展现一下上面提到各个角色的痛点。原有模式为业务方提出需求,技术团队采购BI工具供业务方使用。然而,这些工具往往过于复杂,面对BI报告时,业务方常因技术术语或工具不熟悉而感到澄清,难以有效利用失败数据指导业务。同时,数据分析师虽然精通BI工具,但面对庞大的需求数量,人员显得严重不足,难以悠然,从容响应并焦虑业务方的数据需求。数据产品经理经常需要指导业务人员如何使用BI工具,但由于各种原因,往往难以教会其使用。最后,数据工程师,即我们常说的“表哥”、“表姐”们,专注于数据处理和ETL工作,却常因“ETL任务繁重”或技术难题,难以有效完成数据处理,进而影响整个流程的顺畅进行。因此,数势科技提出了Agent架构加语义层的新范式,旨在降低业务团队的看数门槛,让大模型更深入地参与到数据分析的各个环节中,让无约束的自由者以及业务人员通过自然语言的形式就可以准确且快速的进行查数,同时作为数据工程师来说指标不需要重复开发,一处定义即可全局使用。

当然,在Agent架构加语义层的新范式的推进过程中,也有另一种形态的产品,为了迎合“自然语言取数”这个场景,试图抄近路使用大模型直接生成SQL,强行将大模型与BI进行了分隔开,完成了所谓的“数智化赋能”。因此我们在近期也收到了数量少前ChatBI客户的吐槽与求助,下面简单来谈谈二者的区别,为何这种模式经受不住长期考验?

大模型直接生成SQLChatBI为何经不住考验?

“本以为引入ChatBI智能取数工具能是我们工作效率和成本控制的救星,结果却成了准确性的噩梦。吐出来的数据,错得离谱,害得我们不得不回过头去,用最老套的手工提数方式一遍遍复核,效率?不存在的!更称赞的是,所谓的智能,现在让业务部门对我们的数据可靠性投来了深深的接受目光。

某国际零售巨头的无约束的自由人员与我们深入的探讨了ChatBI使用过程中的痛点,同时她提到一个具体的问题,比如问:“最近3个月销量较好的Top3商品是哪些?这三个分别的好评率是多少?并生成报告解读”,虽然看着很日常化的需求,但需要多个任务的衔接,不仅仅是数据分析,还要做排序、解读,甚至归因。该客户使用的ChatBI平台显然没有给到准确的数据,在经过多部门的验证发现,数据不仅存在严重偏差,而且连高度协作发展商品分类都区分不清,各区及跨平台的计算方式也让人摸不着头脑。

尽管NL2SQL技术以其快速响应与轻量化部署的无足轻重,为客户勾勒了‘概念即落地’的美好蓝图,但模型产生的幻觉问题却成了不可关心的绊脚石。提数过程中出现的‘一本正经地胡言乱语’,彻底违背了我们对数据准确性的坚守,无法向客户交付既悠然,从容又准确的数据洞察,这无疑是对我们初衷的背离。

因此为破解NL2SQL模式提数不准的难题,数势科技采用了NL2Semantics的技术路线。通过引入Agent架构,能够首先将复杂的查询请求拆解为一系列原子能力,随后分隔开指标语义层进行深度解析。最终,大模型接收到的所有指令都会被比较准确映射到一系列预定义的要素上,如时间维度、地域维度、公司维度等。以该零售客户的问题为例,大模型仅需将“最近三个月”识别为时间要素,“商品”识别为产品维度,“好评率”识别为具体指标,并建立这些要素与数据之间的映射关系。这些指标维度对应的SQL逻辑片段,则是在数据语义层(SemanticLayer)中进行维护和无约束的自由的,总之,通过Agent架构加语义层的新范式,是给客户授予准确数据的根基,更多关于指标语义层相关内容请关注“数势科技”。

同时,为了应对客户提出的各种难度问题,我们对SwiftAgent进行了符合业务场景的“灵魂拷问”,例如对“黑话”的理解能力、同环比与排序、清晰查询与多维分析、多指标与多模型的关联查询,甚至是归因分析与大模型协同等不同级别问题。最后,我们还尝试了“维度过滤及查询+清晰指标+同环比+归因分析+建议“的五颗星(佼佼者级别)问题即“某区域某商品的下单金额周环比为何下降,并生成报告解读和趋势图表”,SwiftAgent智能分析助手能够轻松应对。

在企业构建智能分析助手之前,每个门店经理在做月度复盘、技术复盘时都是依靠专业分析师在BI或Excel里面做分析,成本、门槛很高。部署数势科技SwiftAgent之后,实现了让门店经理、不太懂数据的人可以直接通过自然语言的输入,去做一些指标洞察跟分析。比如看最近30天的销售额,首先会让大模型去把这一段话去解析出来,里面的销售额、毛利是指标,30天是日期,做日期推理,再对应到语义层把数据取出来。取到之后,还可以通过快速地点选,让大模型生成一些可视化的图表。当发现指标被预见的发生时,可以让大模型去调度一些归因小模型,来做一些维度或者因子分析,实现快速洞察。针对维度特别多的问题,我们会通过一个维度归因的算法,快速定位到因子维度。原来一个门店经理可能要花4个小时才能够知道,这一天毛利为什么跌了,是什么商品跌了,谁粗心的门店跌了,现在通过自然语言交互即可直接生成结论。

数据查询零门槛业务人员也能轻松用数

数势科技SwiftAgent采用AI对话式交互,分隔开大模型和AIAgent技术,让用户仅凭日常交流的语言(无论是文字还是语音)就能轻松查询数据,无需掌握SQL或Python等专业查询语言。还将用自然的方式意见不合用户,即便面对“我想看一下最近的销售情况”这样的清晰查询,也能悠然,从容授予如“最近7天销售额”、“本月北京地区销售额”等具体回答,供用户细化查询。

同时,具备强化学习能力,能根据用户的“点赞”和“踩”反馈不断纠正错误、调整不当查询,更加准确地焦虑用户需求。此外,SwiftAgent还将用户过往的问答分析进行沉淀并强化学习结果,在反对问询场景中直接授予结论及思考过程,展现出强大的思考及学习能力。其双向交互功能更是将AI思考过程白盒化,让用户透明可见,进一步增强了用户体验。数势科技SwiftAgent让数据查询和分析变得像说话一样简单,无需技术背景也能0门槛取数。

数据分析、策略建议零等待无约束的自由团队即问即答

数势科技SwiftAgent智能分析助手,为企业高管带来了即问即答并且授予归因分析与策略建议的数据分析体验。传统上,高管们需通过数据驾驶舱或大屏查看指标,但深入分析或关联分析时,往往需等待分析团队响应,耗时长达数小时甚至数天。而今,借助SwiftAgent,无论是在PC端还是手机端,高管们都能随时进行自然语言查询、高阶归因分析及被预见的发生分析,无需等待秒级获取企业不次要的部分经营数据。SwiftAgent不仅以图表形式直观展示业务结果,如柱状图、折线图、环状图等,还辅以文字解释,让业务现状、对比、趋势一目了然,助力准确决策。

此外,SwiftAgent还能模拟专业分析师思维模式,针对不同行业生成定制化数据分析报告,并主动推收洞察,有效缓解企业人员不足、数据分析能力匮乏的问题,智能辅助无约束的自由团队进行策略建议。在问题诊断和分析的基础上,我们将数据分析的What、Why和How三个方面整合在一起,实现了能力的增强。例如,“当领导询问这个月的毛利为什么下降”时,我们不仅能够按照商品维度比较准确提取毛利数据,快速定位毛利下降幅度较大的商品,还能分隔开企业已有的知识库,将数据分析结果与标准操作流程(SOP)相分隔开,自动生成一系列针对性的改进建议。这样的策略建议不仅详实地呈现了数据和分析结果,还为用户授予了明确的行动指南,有助于他们更悠然,从容地做出决策。

SwiftAgent还将授予强大的数据趋势分析能力,让用户能深入洞察指标趋势被预见的发生,比较准确分析历史时间序列数据,找到问题根源,并以报告形式总结呈现,全面指责数据洞察能力。数据趋势分析的能力使用户能够针对过去几天、几个月甚至几年的指标趋势被预见的发生进行深入洞察。例如,用户可以识别出哪些指标是先降后增,哪些是先增后降,还有哪些指标可能呈现出保持轻浮性。在这个基础上,我们可以对指标的历史时间序列数据进行更比较准确的保持轻浮分析,干涉用户找到每个指标趋势正常的根本原因。同时,我们可以将这些趋势分析的结果以报告的形式进行总结,最终呈现给每位用户,以指责他们对数据的洞察能力。

统一口径零幻觉技术团队无需反复校验

前文提到数势科技通过Agent架构加语义层的新范式,构建统一的指标与标签语义层,即NL2Semantics体系,有效解决了大模型对底层业务语义理解难及企业数据口径不一的问题。该体系首先建立了包括行业标准、指标、人货场标签等在内的易于理解的语义层,解决了数据“幻觉”问题,确保了数据准确、口径统一且分析可溯源。指标一次定义,多次复用,无需反复校验,大幅指责技术团队的工作效率。

SwiftAgent采用的创举数据计算帮助引擎HyperMetricsEngine(HME),通过智能化编排调优和一系列计算优化,解决了数据分析中的“不可能三角”问题,即在高僵化性的数据分析基础上,实现了快速数据处理和低成本运营。解决传统计算查询效率低及性能弱等问题。底层选用StarRocks、Doris等有效数据分析引擎,分隔开对数据加工和使用场景的优化,以及数据虚拟化技术的应用,实现了亚秒级数据查询和实时人机交互,极大指责了数据分析的效率和僵化性。

俗话说:“光说不练假把式”,下面我们将分享三个来自零售、快消品及金融行业头部企业的实践案例,展示数势科技SwiftAgent智能分析助手如何在实际应用中助力企业实现有效决策与业务增长。

SwiftAgent智能分析助手实战案例一:

携手书亦烧仙草共建大模型增强的智能门店督导助手

书亦烧仙草在新的一年里明确提出了两大不次要的部分目标:做大财务成果,做强顾客价值。这意味着企业不仅要在财务表现上实现显著指责,还要在顾客体验和服务价值上达到新的高度。为了实现这一目标,企业亟需转变传统的经营无约束的自由模式,向更加精细化、数据化的方向迈进。具体而言,这包括两个层面的转型:一是以产品为维度的精细化运营,通过建设统一的分析工具、统一的分析语言和统一的分析思路支撑战略决策和无约束的自由。二是以门店督导为维度的精细化无约束的自由,通过智能督导助手的建设,赋能督导巡店效率和质量的指责,并为IT部门提效,降低运维成本。

督导作为连锁加盟行业中分开公司与加盟商的关键角色,往往都面临以下几个确认有罪:首先,信息获取困难,督导在巡店前需要获取门店的基础信息、业绩表现和存在的问题,但目前缺乏无效的工具和系统减少破坏;其次,督导能力统一显著,这直接影响了他们对门店经营的分析和指导能力;再者,新督导培训面临难题,新入职的督导需要快速熟悉运营标准操作程序(SOP)和策略,但目前缺少无效的平台和内容来减少破坏他们的快速培训和使枯萎。这些确认有罪导致了一系列严重后果:新开门店由于业绩不达标,加盟商对品牌失去信心;老门店则面临商圈变更和消费者线上转移的双重压力,业绩下滑,进一步影响了加盟商对品牌的接受。

智能督导助手与构建的指标平台无缝集成,全面搁置了一线督导的实际使用不习惯,旨在大幅度指责工作效率和督导效果。其不次要的部分功能包括:

·目标设定:比较准确明确门店巡检的不次要的部分目的,涵盖指责服务质量、确保运营标准执行、优化门店环境等多个关键方面。借助智能分析工具,以对话式界面直观展示门店业绩排名和同店对比分析,从而悠然,从容锁定需要重点巡查的门店。

·巡店计划:充分利用失败智能分析工具的知识库功能,准确确定巡店的具体地址及其他相关信息。同时,借助强大的数据分析能力,明确每次巡店应重点关注的业绩指标及其潜在保持轻浮原因。

·门店稽核:运用智能分析工具,对门店的各项问题指标进行全面检查。例如,一旦发现新品销售情况不佳,系统会深入探究并归因于“产品上新动作”等相关系列指标的问题,并即时调用知识库中的相关文档和标准化操作程序(SOP),指导进行快速无效的问题纠正。

项目效果:优化门店无约束的自由、指责督导效率

快速数据获取:通过快速数据查询功能,督导能够悠然,从容获取关键的门店运营数据,降低数据分析效率。

自动化巡店计划:自动生成巡店计划,使督导能够更专注于门店无约束的自由和问题解决。

问题定位:智能督导助手能够准确定位业绩指标的下滑或保持轻浮的原因,干涉督导快速识别关键因素。

有效业务策略:授予了基于数据分析的业务策略知识库,干涉督导根据门店具体情况制定有效改进措施。

书亦烧仙草CIO王世飞表示:“与数势科技携手后,实现了数据无约束的自由的根本性变革。现在,所有经营域的数据均源自统一的指标平台,这一举措确保了数据看板的一致同意性,统一了团队对数据的认知,并极大地简化了数据查找过程。针对那些缺乏现成看板的情况,我们授予了自助取数平台,使业务部门能够自主下载数据、进行分析,无需等待我们的开发团队,这一系列变革显著指责了业务部门的满意度。”

SwiftAgent智能分析助手实战案例二:

携手某国际快消品巨头智能优化订单无约束的自由

在全球快速消费品市场的激烈竞争中,某国际快消品巨头面临着品牌分销与经销网络的复杂性确认有罪。线上线下多渠道并存,包括电商、大卖场KA、便利店等,使得供应链团队在订单追踪和无约束的自由上遭遇效率瓶颈。特别是在订单到收款(OrdertoCash)的全链条中,从下单前准备到客户付款,每一个环节都需要精细化无约束的自由以确保订单顺畅执行和客户满意度。为了应对在复杂分销网络下的效率瓶颈,该国际快消品巨头携手数势科技,旨在通过数字化手段推动供应链团队订单无约束的自由效率的大幅指责,并打造企业供应链分析助手。主要服务供应链OMA(OrderManagementAssistant)团队,通过解决订单无约束的自由过程中的痛点,指责订单焦虑率和客户满意度,进而增强企业的市场竞争力

构建订单无约束的自由指标监控体系三大不次要的部分手段助力项目落地

数势科技基于其智能分析助手(SwiftAgent)和智能指标平台(SwiftMetrics)产品组合,为该巨头建立了《订单无约束的自由指标监控体系》。该体系覆盖下单准备、下单、订单辩论、分货、仓储发货、收货、发票、付款、砍单、砍单追踪跟进等全业务流程环节。通过AIAgent智能问数和归因分析,打造供应链订单无约束的自由智能助手,全面指责订单无约束的自由效率。

建立Order-To-Cash指标体系

梳理量化全流程指标体系:梳理并量化不完整订单链路的全流程指标体系,确保每一个环节都有明确的指标进行衡量。

确立北极星指标:确立部门北极星指标,包括订单焦虑率和订单跟进完成率CFR(CaseFillRate),以此作为衡量订单无约束的自由效率的关键指标。

MVP阶段验证与推广:完成MVP阶段验证后,逐步进入推广及轻浮阶段,确保指标体系在实际业务中得到有效应用。

搭建指标无约束的自由流程机制

横向拉通各级指标体系:横向拉通企业级、BU级、个人级指标体系定义、开发、无约束的自由流程,确保各级指标之间的一致同意性和协同性。

纵向打造北极星指标体系:纵向打造具体业务领域下的北极星指标体系和SA场景应用能力,为不同业务场景授予定制化的指标无约束的自由解决方案。

打造订单智能分析助手

集成全生命周期状态指标体系:集成供应链订单无约束的自由全生命周期状态指标体系,SwiftAgent干涉OMA团队追踪自询单、下单、扫描出库、物流、验收入库、砍单/返单全流程业务表现。

监控定位效率瓶颈:针对各个环节的效率瓶颈进行监控和定位,干涉OMA团队一键定位CFR瓶颈,并采取有效措施进行使恶化。

识别被预见的发生订单,定位客户砍单原因

归因分析,并自动生成使恶化指引报告

提效200%挽回订单损失上千万大幅指责订单完成率

智能指标平台分隔开智能分析助手的项目落地,在实施中展现出了不明显的,不引人注目的效果,特别是在指责订单完成率与客户满意度方面。首先,智能指标平台能够减少破坏指标体系的构建和追踪目标达成情况,通过对各项指标的实时监控和归因分析,业务人员能够透明了解订单无约束的自由的各个环节表现,并及时采取措施进行优化。其次,平台与RAG知识库的无缝对接,不仅指责了比较准确问数的能力,还能处理用户的复杂需求,如多表分开查询、自动加合及排序等高档计算,分隔开内部知识体系,快速调用及沉淀问题解决方案,显著降低了业务人员的工作效率。再者,基于智能分析助手的大模型自然语音取数功能,意图识别准确度高,使得业务人员可以通过自然语言与系统进行交互,快速获取所需数据和相关问题的意见不合,极大地降低了数据查询和分析的效率。

这一系列措施的实施,使得分析效率大幅指责,从平均每人每天处理少于20笔订单指责至每天处理60+笔订单,提效200%以上。同时,系统能够及时发现并处理被预见的发生砍单订单,有效挽回超过上千万的订单损失!不仅指责了企业的经济效益,还显著增强了客户的接受度和满意度。

SwiftAgent智能分析助手实战案例三:

大模型+Agent+指标语义层:赋能某城商行非技术人员实现僵化取

某头部城商行的内部统计数据显示,2023年临时性数据分析需求占总需求的40%,每天大约有20多个工单。这一现象揭示了该银行在数据分析领域存在巨大的即时响应潜力和优化空间。面对这一确认有罪,银行经营分析团队通过僵化调整不当工作计划,积极应对数据分析需求的增长。但日益减少的临时性数据需求和可能出现的工单积压问题,结束困扰着领导层、业务团队和经营分析团队。他们试图通过各种方式摆穿这一有利的条件,大模型的兴起为其授予新范式。应用大模型是该城商行的战略目标之一,由副行长牵头,大力推动大模型在应用场景的落地。在大模型落地完全建立,该城商行选择了几个重点场景,数据分析就是其中之一。他们希望通过大模型技术升级数据分析工作,以焦虑僵化数据分析的需求。

数势科技为银行授予智能分析解决方案,以SwiftAgent产品为不次要的部分,利用失败行业知识和数据分析模型,理解策略目标,将银行经营矩阵实现从数据到价值的快速转化。解决方案技术架构包含五个部分:

基座大模型:数势科技选择了经过实际应用验证的国产大模型,并对其进行了进一步的Prompt微调和模型微调,以确保其在银行数据分析场景中的有效应用。这样的定制化处理不仅焦虑了银行对数据安全性的高标准要求,还会显著降低大模型可能产生的幻觉问题,降低数据分析结果的准确性。

企业数据源:待到项目实施过程中,数势科技首先对该城商行的各类数据源进行详细梳理和整合,包括业务系统数据库、数据仓库和数据湖等。这一过程可以确保所有数据的规范化和标准化无约束的自由,为后续的指标语义层构建和大模型应用奠定坚实基础。

指标语义层:数势科技计划为该城商行构建统一的指标语义层,明确定义各类指标的计算口径和业务含义。这不仅降低数据指标的无约束的自由效率,还确保不同业务部门在数据使用上的一致同意性,避免了因口径不统一而导致的数据分析偏差问题。

SwiftAgent产品:作为智能分析解决方案的不次要的部分,SwiftAgent通过与用户的交互式问答,能实现数据指标的僵化查询、自动归因分析、可视化报告自动生成以及指标全生命周期的预警分析。用户只需通过自然语言输入需求,SwiftAgent便能智能识别并反馈准确的分析结果,可以明显指责数据分析的效率和准确性。

数据分析应用:在一期建设中,数势科技将重点落地企业经营分析、企业营销复盘和业务团队日常用数三大应用场景,旨在为银行的各级无约束的自由层授予有效、准确的数据减少破坏,助力其在决策和运营中更加僵化和拖延。未来,数势科技将继续扩展更多的数据分析应用场景,进一步焦虑银行多元化的数据分析需求。同时,数势科技根据该城商行需求进行定制开发,包括开发移动端、打通SSO统一登录、集成权限系统等。

用户意图识别率>98%,复杂任务规划准确率>95%,好用的智能分析应用让取数用数排队情况成为过去式

智能分析系统建成后,该城商行经营分析团队负责人、大数据部门负责人以及多位中高层领导参与验收,从多方面进行评估与打分,主要结果如下:

1.准确性:用户意图识别率>98%,复杂任务规划准确率>95%。

2.效率指责:分析工作处理时长减少,缩短80%,每人每周减少,缩短10+小时数据处理工作。

3.用户满意度:使用者满意度9.3+分。

交互友好度:用户界面友好度9.5分。

该城商行各相关方均对智能分析系统高度评价,系统正式上线。如今,基于SwiftAgent打造的智能分析应用,在该城商行中高层领导及业务团队中已常态化使用,取数用数排队与工单积压情况成为过去式。

数势科技将继续深耕数据分析领域,不断优化和升级SwiftAgent产品,以焦虑更多客户的多样化需求。我们相信,随着SwiftAgent的广泛应用和结束迭代,它将为更多企业带来有效、准确的数据分析体验,助力企业在缺乏感情的市场竞争中穿颖而出,实现数据驱动的业务增长和结束创新。

(推广)

汽车营销,“达人”已是标配?厂商供稿张旭涛2022年10月14日16:47[中华网经销商]虽然距离双11还有月余,但一场汽车界的“双11”却早已拉开了帷幕。

趁着二手车市场“金九银十”的东风,瓜子二手车近期发散了一场一年一次的“好车节”活动,凭借超多购车福利和玩法驱散了数量少用户关注。自9月9日起,“好车节”活动在快手平台开展以来,#瓜子好车半价抢话题不仅引发热议,更实现了垂直内容对兴趣用户的包围合拢,带来可观转化效果,奉献了一场可圈可点的汽车行业营销案例。

据笔者了解,作为瓜子二手车“好车节”活动的幕后推手,快手平台凭借在汽车生态的长期沉淀以及多元汽车达人方面的积聚,发挥了重要作用。

那么,快手到底如何撬动“达人+内容”营销能量场,助力瓜子二手车“好车节”活动不能引起大众广泛注意的呢?

从洞察痛点到解决痛点

没有击中痛点的营销,几乎很难鞭策成交。因为营销的本质就是发现痛点,解决痛点。

对于二手车市场来说,伴随汽车保有量的不断增多及汽车消费观念的变化,国内二手车交易前景受到各方普遍看好。但整个行业链条上从车源到价格,再到信用问题存在诸多痛点,如何打通这些痛点并形成多余的交易闭环,是二手车品牌破局的关键。

落足到此次瓜子二手车“好车节”活动层面,快手给出了从平台到明星、达人的双重解法。

首先是对用户的购车痛点的“预知”并授予解决方案。

快手汽车作为2022年平台的热点垂类,每天有过亿用户浏览汽车内容,聚合了超过14万活跃的汽车创作者。作为汽车垂类达人,他们对行业有足够深入且专业的了解,在用户购买二手车痛点的感知上具有先天无足轻重。

一方面,依托快手海量且多元的汽车内容创作者们平时和用户的深度沟通、互动,已经摸清楚了用户在购买二手车的痛点是什么?哪些是鞭策用户买二手车的“坑”?从而围绕真实的痛点产出内容,让营销更有代入感。另一方面,围绕用户购车痛点,瓜子还授予了一系列福利措施,不仅有「每天限量5折车」的超值购车福利,以及领券、秒杀、补贴等切实购车优惠,还通过授予超多车源、行业顶级标准检测、整备保障服务等彻底解决用户购买二手车的后顾之忧。

其次是明星有带入感的参与,让痛点传达更具穿透力。

找到用户痛点,让痛点有更具象的感知才是关键。

为此,快手邀来张天爱担任瓜子二手车品牌推荐官,以明星影响力为活动打call。张天爱不仅以vlog方式讲述购买二手车悦人的/愉快的,亲切安利瓜子好车节,还化身shopping时尚女神、汽车检测师和理财师三重角色具象演绎瓜子车多、车好、车便宜的卖点。

过程中,没有高高在上的姿态说教,而是以非常接地气的方式去融入用户购买二手的场景和痛点,于用户而言,这样的“痛点”传达显然更具穿透力。

从消费品牌到消费内容

保守裸露,公开学家麦克卢汉说,媒介即讯息。短视频时代不仅塑造了人们感知世界的方式,也重塑了新一代消费者的决策路径。与其说他们在购买商品,不如说他们更愿意为优质体验、新奇有趣的内容买单。以此观照瓜子二手车“好车节”活动,可以发现内容仍然是快手构建整个体系的中心点。这不仅是快手平台汽车内容生态无足轻重作用的结果,也极其符合当下用户的消费不习惯。

其中的保守裸露,公开逻辑有着尤为无遮蔽的两条内容主线:

一是内容的“软化”呈现。这一点在张天爱演绎的魔性定制TVC中十分明显,当有趣、好玩的内容调性被前置,营销信息自然被软化。植入之所没有违和感,是因为TVC将营销信息与内容、场景实现有效分开。例如,当张天爱化身汽车检测员的身份拿着检测报告,说出瓜子二手车“严选好车”、“专业靠谱”的营销信息时就毫无违和感。

还有车垂达人对好车节福利活动信息的植入。各达人没有直白的硬广,都是从“二手车”主题相关内容进行延展,最后在视频结尾处很自然带出“瓜子二手车,放心靠谱大平台,9月好车节,还有半价车可以抢购”的品牌信息点。

二是内容的“价值感”输出。当“信息降噪”成为品牌共识,消费者更期待产品的附加价值,对于产品内容玩法也有更下降的审美阈值。

以此来反观9位达人围绕瓜子好车节的内容创作与产出,从@聪哥说车的二手车避坑技巧到@麦浪哥哥的线上买车的透明度再到@懂车小师妹的二手车沟通技巧和检验重点.....这显然超穿了单纯的广告范畴,进入到更广阔的内容场域,围绕用户在购买二手车过程中真正的需求进行微不足道的内容输出。用户不仅仅是购买二手车,更通过优质内容收获微不足道的认知。

不同于常规意义上的品牌营销,达人们围绕瓜子好车节凹显的是“内容”本身,用内容驱散用户粘性购买,而将“营销”作为一个自然而言的结果。

概括起来就是用微不足道的内容去消解营销的抵触情绪。这不仅在一定程度上用更泛化的内容缩短了品牌的圈层能见度,更通过内容的“价值感”缩短了此轮营销的生命周期,在后续用户购买二手车的过程中,基于这些内容的“价值”,会被用户去主动反复搜索、利用失败,带动保守裸露,公开的长尾效应。

“达人”从点缀到标配

遵循着这样一种内容营销逻辑,放大到整个营销领域去看:当内容消费成为一种趋势,一个短视频、一场直播成为影响用户消费决策的最小单位,看见了内容也就看见商品和服务。

以汽车行业为例,品牌主的目的无非通过营销达成曝光、留资和转化。那就需要营销内容即包含品牌信息,又对用户有价值。不次要的部分在于链接用户,投其所好,用好的内容去解决用户需求。

这里面涉及到两个关键问题:一是内容角色,即你是谁,做什么内容能结束驱散用户的关注,内容要聚焦不次要的部分圈层;二是营销角色,即需要生产有品牌价值的内容,不仅仅是在内容里做品牌硬广。

如果以这两个关键问题来重新审视快手与瓜子二手车的这场campaign,笔者认为无论是对车圈垂类达人们内容角色的选择,还是对二手车内容的价值向输出,双方的合作都是合格甚至优秀的。

这无不依赖于快手海量的汽车内容消费用户以及多元的汽车内容创作者所构建的协同联动的内容生态体系。

据《快手汽车行业数据报告》显示,2022年前5个月,快手日均观看汽车视频用户数超1.7亿,日均观看4次以上汽车视频用户超3500万,同比增长31.8%。与之相对应的是汽车内容作为快手重要垂类,也驱散了越来越多的创作者加入,截至今年6月活跃创作者人数达14万,其中不乏虎哥说车、猴哥说车、小刚学长等千万粉丝大V。

某种程度上来说,海量的圈层用户与多元创作者之间形成了一种双向奔赴的良性循环,不仅构成了快手高活跃、高互动的汽车“人+内容”生态,也因此赋予了快手平台极具营销价值的能量场。

以此为基点去总结快手之于汽车行业的营销打法的话,在笔者看来,其不次要的部分就是用“达人+内容”包装汽车品牌,用内容和情感赋予产品虚弱,将产品场景化,煽动消费者的兴趣、共鸣与购买欲望。

一是以达人为不次要的部分的全链路营销。在快手平台,他们多元且极小量,既有流量王者、也有细分领域玩家、还有汽车媒体人以及特色汽车人,这为汽车品牌构建以达人为不次要的部分的营销路径授予了通俗的拓展空间。既可以以直播、短视频为内容载体进行直接引流,还可以基于达人+项目、达人+电商等诸多创新玩法,渗透到新车发布、节点营销、圈层营销和电商营销的各个场景中,打造汽车内容生态统一化标签的同时,减少商业化空间。

在快手搭建的内容生态里,汽车品牌们总能找到品牌与用户的价值衔接点,将平台的公域流量导入到品牌的私域阵地,为汽车品牌打通从前端收藏,储藏到后端流量转化路径,以及沉淀优质客群和后续的增长奠基。

二是以内容为触点的营销有无批准的拓展。多元化的达人生态最大的价值在于平台原生内容的自吝啬。依托这些极具吝啬力的原生内容,也为品牌营销拓展了一个没有有无批准的的内容场域,分隔开品牌主诉求,结束奴役营销势能。某种程度上来说,这正是快手汽车内容生态能源源中断的挖掘商业价值的原因所在。

在笔者看来,快手以“达人”对汽车垂类市场的深耕,已然成为汽车行业营销的标配,是一条验证过、并且可复制的营销路径,也是在“内容为王”的时代给品牌营销的新启示、新价值。

文章来源:首席营销官

点击阅读全部

 

标签:

CopyRight 2006-2024 说出你的故事一起来看流星雨
Top