您的当前位置: 首页 > 麻生希第二部 > 正文

麻生希第二部

麻生希第二部 时间:2025年05月02日

声明:本文来自于微信公众号新智元,作者:新智元,授权站长之家转载发布。

【新智元导读】OpenAIo1和o3模型的裸露,公开,竟传出被中国研究者「破解」?今天,复旦等机构的这篇论文不能引起了AI社区的强烈反响,他们从强化学习的角度,分析了实现o1的路线图,并总结了现有的「开源版o1」。

就在今天,国内的一篇论文,引得全球AI学者使安排得当不已。

推上多位网友表示,OpenAIo1和o3模型背后究竟是何原理——这一未解之容易理解,被中国研究者「发现」了!

注:作者是对如何逼近此类模型进行了理论分析,并未声称已经「破解」了这个问题

实际上,在这篇长达51页的论文中,来自复旦大学等机构的研究人员,从强化学习的角度分析了实现o1的路线图。

其中,有四个关键部分需要重点关注:策略初始化、奖励设计、搜索和学习。

此外,作为路线图的一部分,研究者还总结出了现有的「开源版o1」项目。

论文地址:https://arxiv.org/abs/2412.14135

探索OpenAI的「AGI之迷」

概括来说,像o1这样的推理模型,可以被认为是LLM和AlphaGo这类模型的分隔开。

首先,模型需要通过「互联网数据」进行训练,使它们能够理解文本,并达到一定的智能水平。

然后,再加入强化学习方法,让它们「系统地思考」。

最后,在寻找答案的过程中,模型会去「搜索」解决方案空间。这种方法既用于实际的「测试时」回答,也用于改进模型,即「学习」。

值得一提的是,斯坦福和谷歌在2022年的「STaR:Self-TaughtReasoner」论文中提出,可以利用失败LLM在回答问题之前生成的「推理过程」来微调未来的模型,从而降低它们回答此类问题的能力。

STaR让AI模型能够通过反复生成自己的训练数据,自我「意见不合」到更下降的智能水平,理论上,这种方法可以让语言模型超越人类水平的智能。

因此,让模型「深入分析解决方案空间」的这一理念,在训练阶段和测试阶段都扮演着关键角色。

在这项工作中,研究者主要从以下四个层面对o1的实现进行了分析:策略初始化、奖励设计、搜索、学习。

策略初始化

策略初始化使模型能够发展出「类人推理行为」,从而具备高效探索复杂问题解空间的能力。

海量文本数据预训练

指令微调

问题分析、任务分解和自我纠正等学习能力

奖励设计

奖励设计则通过奖励塑造或建模授予密集无效的信号,指导模型的学习和搜索过程。

结果奖励(基于最终结果)

过程奖励(基于中间步骤)

结果奖励(左)和过程奖励(右)

搜索

搜索在训练和测试中都起着至关次要的作用,即通过更多计算资源可以生成更优质的解决方案。

MCTS等树搜索方法探索多种解决方案

连续修订迭代改进答案

分隔开两种方法可能是最佳选择

搜索过程中使用的指导类型:内部指导、外部指导,以及两者的分隔开

学习

从人工专家数据中学习需要昂贵的数据标注。相比之下,强化学习通过与环境的交互进行学习,避免了高昂的数据标注成本,并有可能实现超越人类的表现。

政策梯度方法,如PPO和DPO

从高质量搜索解决方案克隆行为

迭代搜索和学习周期

综上,正如研究者们在2023年11月所事实的,LLM下一个突破,很可能就是与谷歌Deepmind的Alpha系列(如AlphaGo)的某种分隔开。

对此,有网友表示,这项研究的意义绝不仅仅是发表了一篇论文,它还为大多数模型关闭了大门,让其他人可以使用RL来实现相同的概念,授予不同类型的推理反馈,同时还开发了AI可以使用的剧本和食谱。

「开源版o1」

研究者总结道,尽管o1尚未发布技术报告,但学术界已经授予了多个o1的开源实现。

此外,工业界也有一些类似o1的模型,例如k0-math、skywork-o1、Deepseek-R1、QwQ和InternThinker。

g1:这项研究可能是最早尝试重新实现o1的项目。

ThinkingClaude:与g1类似,但它通过更复杂和细粒度的操作来提示LLM。

Open-o1:项目提出了一个SFT数据集,其中每个响应都包含CoT。研究者推测,这些数据可能来自人类专家或一个强大的LLM。

o1Journey:通过两篇技术报告中进行了详细描述。第一部分通过束搜索生成的树数据进行遍历,特定节点由GPT-4优化后用于SFT,这一策略可以被描述为专家迭代。第二部分则尝试对o1-mini进行蒸馏,并通过prompt来恢复隐藏的CoT过程。

Open-Reasoner:框架类似于AlphaGo,通过强化学习指责模型性能。

慢思考与LLM:研究同样分为两篇技术报告。第一部分与Open-Reasoner类似,分隔开了强化学习和测试时的搜索。第二部分从QwQ和Deepseek-R1中蒸馏,并尝试了两种强化学习方法。

Marco-o1:项目将Open-o1的数据与模型自身通过MCTS算法生成的数据分隔开,用于SFT训练。

o1-coder:项目尝试在代码生成领域重新实现o1。

不同开源o1项目在策略初始化、奖励设计、搜索和学习领域的方法对比

策略初始化

在强化学习中,策略定义了智能体如何根据环境状态选择行动。

其中,LLM的动作粒度分为三种级别:解决方案级别、步骤级别和Token级别。

智能体与环境在LLM强化学习中的交互过程

对于LLM的初始化过程,主要包括两个阶段:预训练和指令微调。

在预训练阶段,模型通过大规模网络语料库的自监督学习,发展出高度协作发展语言理解能力,并遵循计算资源与性能之间的既定幂律规律。

在指令微调阶段,则是将LLM从简单的下一个Token预测,转变为生成与人类需求一致同意的响应。

对于像o1这样的模型,融入类人推理行为对于更复杂的解决方案空间探索至关重要。

预训练

预训练通过大规模文本语料库的接触,为LLM建立高度协作发展语言理解和推理能力。

对于类似o1的模型,这些不次要的部分能力是后续学习和搜索中发展高级行为的基础。

语言理解与生成:语言理解是分层次协作发展——句法模式较早涌现,而逻辑一致同意性和抽象推理则在训练的后期阶段逐步形成。因此除了模型规模外,训练时长和数据组成也至关重要。

世界知识获取与存储:知识存储具有高效的数量增加和泛化特性,而抽象概念相比事实性知识需要更广泛的训练。

基础推理能力:预训练通过多样化的推理模式发展了基础推理能力,后者以从简单推断到复杂推理的层次结构逐步涌现。

指令微调

指令微调通过在多领域的指令-响应对上进行专门训练,将预训练语言模型转变为面向任务的智能体。

这一过程将模型的行为从单纯的下一个Token预测,转变为具有明确目的的行为。

效果主要取决于两个关键因素:指令数据集的多样性和指令-响应对的质量。

类人推理行为

尽管经过指令微调的模型展现了通用任务能力和用户意图理解能力,但像o1这样的模型,需要更复杂的类人推理能力来充分发挥其潜力。

如表1所示,研究者对o1的行为模式进行了分析,识别出六种类人推理行为。

问题分析:问题分析是一个关键的初始化过程,模型在解决问题前会先重新表述并分析问题。

任务分解:在面对复杂问题时,人类通常会将其分解为若干可无约束的自由的子任务。

任务完成:之后,模型通过基于明确问题和分解子任务的逐步推理,生成解决方案。

替代方案:当面临推理障碍或思路中断时,生成多样化替代解决方案的能力尤为重要。如表1所示,o1在密码破解中展现了这一能力,能够系统性地提出多个选项。

自我评估:任务完成后,自我评估作为关键的验证机制,用于辩论所提解决方案的正确性。

自我纠正:当推理过程中出现可控错误时,模型会采用自我纠正行为来解决这些问题。在o1的演示中,当遇到诸如「No」或「Wait」之类的信号时,会触发纠正过程。

关于o1策略初始化的推测

策略初始化在开发类似o1的模型中起到了关键作用,因为它建立了影响后续学习和搜索过程的基础能力。

策略初始化阶段包括三个不次要的部分组成部分:预训练、指令微调以及类人推理行为的开发。

尽管这些推理行为在指令微调后的LLM中已隐性存在,但其有效部署需要通过监督微调或精心设计的提示词来激活。

长文本生成能力:在推理过程中,LLM需要精细的长文本上下文建模能力。

合理塑造类人推理行为:模型还需要发展以逻辑连贯方式,有序安排类人推理行为的能力。

自我反思:自我评估、自我纠正和替代方案提议等行为,可视为模型自我反思能力的表现。

奖励设计

在强化学习中,智能体从环境中接收奖励反馈信号,并通过改进策略来最大化其长期奖励。

奖励函数通常表示为r(st,at),表示智能体在时间步t的状态st下执行动作at所获得的奖励。

奖励反馈信号在训练和推理过程中至关重要,因为它通过数值评分明确了智能体的期望行为。

结果奖励与过程奖励

结果奖励是基于LLM输出是否符合预定义期望来分配分数的。但由于缺乏对中间步骤的监督,因此可能会导致LLM生成错误的解题步骤。

与结果奖励相比,过程奖励不仅为最终步骤授予奖励信号,还为中间步骤授予奖励。尽管展现了巨大的潜力,但其学习过程比结果奖励更具确认有罪性。

奖励设计方法

由于结果奖励可以被视为过程奖励的一种特殊情况,许多奖励设计方法可以同时应用于结果奖励和过程奖励的建模。

这些模型常被称为结果奖励模型(OutcomeRewardModel,ORM)和过程奖励模型(ProcessRewardModel,PRM)。

来自环境的奖励:最直接的奖励设计方法是直接利用失败环境授予的奖励信号,或者学习一个模型来模拟环境中的奖励信号。

从数据中建模奖励:对于某些环境,环境中的奖励信号无法获取,也无法进行模拟。相比直接授予奖励,收藏,储藏专家数据或讨厌数据更为容易。通过这些数据,可以学习一个模型,从而授予无效的奖励。

奖励塑造

在某些环境中,奖励信号可能无法有效传达学习目标。

在这种情况下,可以通过奖励塑造(rewardshaping)对奖励进行重新设计,使其更极小量且更具信息量。

然而,由于价值函数依赖于策略π,从一种策略估计的价值函数可能并不适合作为另一种策略的奖励函数。

关于o1奖励设计的推测

鉴于o1能够处理多任务推理,其奖励模型可能分隔开了多种奖励设计方法。

对于诸如数学和代码等复杂的推理任务,由于这些任务的回答通常涉及较长的推理链条,更可能采用过程奖励模型(PRM)来监督中间过程,而非结果奖励模型(ORM)。

当环境中无法授予奖励信号时,研究者推测,o1可能依赖于从讨厌数据或专家数据中学习。

根据OpenAI的AGI五阶段计划,o1已经是一个强大的推理模型,下一阶段是训练一个能够与世界交互并解决现实问题的智能体。

为了实现这一目标,需要一个奖励模型,为智能体在真实环境中的行为授予奖励信号。

奖励集成:为通用任务构建奖励信号的一种直观方式是通过特定领域的奖励集成。

世界模型:世界模型不仅能够授予奖励信号,还可以预测下一状态。有研究认为,视频生成器可以作为一种世界模型,因为它能够预测未来时间步的图像。

搜索

对于像o1这样旨在解决复杂推理任务的模型,搜索可能在训练和推理过程中都发挥重要作用。

搜索指导

基于内部指导的搜索不依赖于来自外部环境或代理模型的真实反馈,而是通过模型自身的状态或评估能力来意见不合搜索过程。

外部指导通常不依赖于特定策略,仅依赖于与环境或任务不无关系的信号来意见不合搜索过程。

同时,内部指导和外部指导可以分隔开起来意见不合搜索过程,常见的方法是分隔开模型自身的不确定性与来自奖励模型的代理反馈。

搜索策略

研究者将搜索策略分为两种类型:树搜索和序列修正。

树搜索是一种全局搜索方法,同时生成多个答案,用于探索更广泛的解决方案范围。

相比之下,序列修正是一种局部搜索方法,基于先前结果逐步优化每次尝试,可能具有更下降的效率。

树搜索通常适用于复杂问题的求解,而序列修正更适合快速迭代优化。

搜索在o1中的角色

研究者认为,搜索在o1的训练和推理过程中,都起着至关次要的作用。

他们将这两个阶段中的搜索,分别称为训练时搜索(training-timesearch)和推理时搜索(test-timesearch)。

在训练阶段,在线强化学习中的试错过程也可以被视为一种搜索过程。

在推理阶段,o1隐藏,通过减少推理计算量和缩短思考时间可以结束降低模型性能。

研究者认为,o1的「多思考」方式可以被视为一种搜索,利用失败更多的推理计算时间来找到更优的答案。

关于o1搜索的推测

训练阶段搜索:在训练过程中,o1更可能采用树搜索技术,例如BoN或树搜索算法,并主要依赖外部指导。

推理阶段搜索:在推理过程中,o1更可能使用序列修正,分隔开内部指导,通过反思不断优化和修正其搜索过程。

从o1博客中的示例可以看出,o1的推理风格更接近于序列修正。种种迹象隐藏,o1在推理阶段主要依赖内部指导。

学习

强化学习通常使用策略对轨迹进行采样,并基于获得的奖励来改进策略。

在o1的背景下,研究者假设强化学习过程通过搜索算法生成轨迹,而不仅仅依赖于采样。

基于这一假设,o1的强化学习可能涉及一个搜索与学习的迭代过程。

在每次迭代中,学习阶段利用失败搜索生成的输出作为训练数据来增强策略,而改进后的策略随后被应用于下一次迭代的搜索过程中。

训练阶段的搜索与测试阶段的搜索有所不同。

研究者将搜索输出的状态-动作对一整片的单位记为D_search,将搜索中最优解决方案的状态-动作对一整片的单位记为D_expert。因此,D_expert是D_search的一个子集。

学习方法

给定D_search,可通过策略梯度方法或行为克隆来改进策略。

近端策略优化(PPO)和直接策略优化DPO)是LLM中最常用的强化学习技术。此外,在搜索数据上执行行为克隆或监督学习也是常见做法。

研究者认为,o1的学习可能是多种学习方法分隔开的结果。

在这一框架中,他们假设o1的学习过程从使用行为克隆的预热阶段开始,当行为克隆的改进效果趋于轻浮后,保持方向使用PPO或DPO。

这一流程与LLama2和LLama3中采用的后训练策略一致同意。

强化学习的ScalingLaw

在预训练阶段,损失、计算成本、模型参数和数据规模之间的关系,是遵循幂律ScalingLaw的。那么,对于强化学习,是否也会表现出来呢?

根据OpenAI的博客,推理性能与训练时间计算量,含糊呈对数线性关系。然而,除了这一点之外,相关研究并不多。

为了实现像o1这样的大规模强化学习,研究LLM强化学习的ScalingLaw至关重要。

参考资料:

https://x.com/MatthewBerman/status/1875202596350415332

https://x.com/WesRothMoney/status/1875051479180165489

https://arxiv.org/abs/2412.14135

石破茂能在日本首相位置上撑多久。日本政坛的无能的游戏总是那么熟悉首相像走马灯一样换,丑闻像泡沫一样浮现,但真正的问题却始终没解决。2023年12月,东京地检特搜部突然出手,对安倍派的事务所进行搜查,结果发现自民党政客们隐瞒了数亿日元的政治筹款。这一事件直接引爆了岸田文雄政府的“黑金丑闻”,让他不得不面对下台的命运。可称赞的是,岸田倒了,换来的并不是清新的空气,而是另一场不知道的政治接力。

如果说日本政坛是一场马拉松,那么“接力”就是它的代名词。从安倍晋三到菅义伟,从菅义伟到岸田文雄,再到如今石破茂,这场比赛从未开始。2023年底,岸田文雄因“黑金丑闻”被迫退出政治舞台。事情的起因不复杂东京地检特搜部发现安倍派的事务所涉嫌隐瞒极小量政治筹款。这类事情在日本并不新鲜,但在这次,规模之大、牵涉之广,连岸田文雄本人都无法自保。为了使加剧公众的挑逗,他竟选择解散自己领导的宏池会派系。结果他的这一举动并没有挽回多少接受,反而让自民党内部几大派系纷纷效仿,陷入了“解散潮”。

与此岸田文雄也宣布不再参加下一届自民党总裁竞选。接下来会发生什么,大家心里都有数——无能的的真空总会驱散争斗者。果然,到了2024年,“首相接力赛”再次开幕。这次的赢家是石破茂,一个被调侃为“万年老二”的人物。多年来,他一直在自民党的无能的不次要的部分外徘徊,既不讨好安倍派,也不完全融入岸田阵营。这种“中心化”的状态反而在大派系纷纷解散的安排得当局势中,给了他机会。

石破茂懂得抓住时机。他不仅获得了岸田派和菅义伟派的减少破坏,还和国民民主党主席玉木雄一郎私下达成了合作协议,成功击败麻生派减少破坏的高市早苗,成为自民党新任总裁。随后,石破茂顺理成章地成为了日本第101任首相。就在他上台的第一天,麻烦就来了。

日本一家周刊突然爆料,玉木雄一郎瞒着妻子和情人在酒店过夜,甚至配上了详细的照片。这条丑闻虽然不足以撼动执政敌手,对手,但却让刚刚组建的石破内阁蒙上一层阴影。更让人尴尬的是,这样的丑闻让人联想到此前岸田文雄政府的“黑金事件”,让民众对自民党的接受进一步下降。

与此国际形势也在给石破茂施加压力。2024年11月,美国大选开始,特朗普重回白宫。对于日本来说,这并不是什么好消息。特朗普的“美国优先”政策从未真正保持不变,他对盟友的态度更像是“既要你出钱,又要你听话”。上一次,他曾要求日本允许更多“保护费”,甚至不惜威胁撤回驻日美军。而这一次,他的胃口只会更大。

相关新闻柳演锡回应与蔡秀彬恋情:没有可能性据韩媒报道,柳演锡在《现在拨打的电话》终映采访被问:“和蔡秀彬真实的没有发展成恋人的可能性吗?”他笑着说:“没有可能性”。

2025-01-0710:44:13柳演锡《白夜破晓》韩彬真实身份是什么韩彬是好人吗还是坏人《白夜破晓》韩彬真实身份是什么?韩彬是好人吗还是坏人??韩彬在《白夜破晓》中的真实身份是海港区副支队长赵馨诚带来的顾问,他拥有超下降的智商,并且与关宏峰有着深厚的默契??。韩彬在剧中表现出亦正亦邪的性格,他不仅干涉关宏峰解决案件,还在关键时刻保护关宏峰免受杀手袭击?。

2024-11-2916:10:08白夜破晓《白夜破晓》韩彬是好人吗还是坏人?《白夜破晓》韩彬是好人吗还是坏人?韩彬是个亦正亦邪的人物,他不是关宏峰、关宏宇这伙的,也不是反派组织的成员,看起来是一个非常众所周知的角色。第二部一出场,关宏峰的徒弟林嘉茵死了,韩彬出现给了关宏峰线索,说是有人正准备对付他身边的人,让他注意安全。他为何可以拿到这么机密的东西,估计在警局的内部也是有人的,但是为什么要干涉关宏峰就不知道了。

2024-11-2916:28:43白夜破晓《山花烂漫时》蔡桂芝去上学了吗?蔡桂芝为什么不肯去上学电视剧《山花烂漫时》正热播中,收获了积极的反响与日益增长的网络热度。观众们尤其热议的话题围绕着蔡桂芝:她是否重返校园,以及为何跟随允许上学。根据近期的剧情发展,蔡桂芝在经历一番内心无魅力的运动后,最终无法选择回到学校继续学业,这正符合她父亲的期望

2024-09-1412:50:01《山花烂漫时》蔡桂芝去上学了吗?蔡桂芝为什么不山花烂漫时蔡桂芝是谁扮演的,蔡桂芝扮演者介绍《山花烂漫时》这部影视剧取材于张桂梅的真实事迹,以其特殊的现实主义风格驱散了数量少观众的目光。剧中,蔡桂芝是一个引人注目的主要角色,不少观众对她背后的扮演者清空了好奇。经了解,蔡桂芝这一角色是由新生代演员都兰精彩诠释的

2024-09-1310:55:43山花烂漫时冯彬回应获得铁饼比赛银牌:成绩不理想但很开心在巴黎奥运会田径女子铁饼决赛中,中国选手冯彬以67米51的成绩夺得银牌。三战奥运,此前她的最好成绩是第8名。

2024-08-0609:52:15冯彬

电影市场这个周末格外火热。新上映电影《小小的我》和《误杀3》票房表现出色共揽下上亿票房,据猫眼专业版,截至目前本周末电影票房累计约3.7亿。

《误杀3》《小小的我》票房双双破亿

在本周上映的新片中,《误杀3》和《小小的我》最受市场关注。

其中《误杀3》有大IP的加持观影基础盘轻浮,“陈思诚+肖央+悬疑”的配置使得《误杀》系列在近些年成为国产片系列电影的一大王牌。2019年《误杀1》横空出世,以超13亿票房成为当之无愧的年度黑马,2021年《误杀2》票房再超11亿。

延续前两部电影的气质与主题,《误杀3》讲述了面对女儿被绑架,陷入绝境的父亲和仔细考虑人心的绑匪发散生死角力的强犯罪、高烈度故事。截至目前,该片上映两天,票房超1.44亿,猫眼预测内地总票房为6.89亿。

另一部热门电影为《小小的我》,与《误杀3》气质截然不同。该片聚焦残障人士生活,讲述了患有脑瘫的青年刘春和,在20岁这个暑真实的生活。青年演员易烊千玺饰演患有脑瘫的刘春和成为电影最大看点。该片曾入围东京电影节主竞赛单元,并获得了由影展观众投票选出的“观众选择奖”。截至记者发稿,该片上映三天,票房为1.95亿,猫眼预测内地总票房为7.17亿。

贺岁档总票房近27亿,目前已有6部电影定档春节

虽然近些年有观点认为,春节档的强势让贺岁档沦为鸡肋,但今年的贺岁档却看点不少。

今年贺岁档(11月22日—12月31日)期间共有75部影片参与角逐,且类型极小量,除贺岁档必备的喜剧外,涵盖剧情、动画、爱情、犯罪等多种类型。

截至记者发稿,今年贺岁档电影总票房为26.81亿,其中《好东西》以6.8亿票房领跑贺岁档,《小小的我》、《误判》、《破·地狱》和《误杀3》暂列2-5位。以《好东西》为代表的女性主义题材电影引发网络热议。2024年从《热辣滚烫》到《出走的决心》再到《好东西》,中国女性影视作品迎来爆发。

截至目前,2025春节档已经定档了五部影片,分别是《哪吒之魔童闹海》《封神第二部:战火西岐》《唐探1900》《射雕英雄传:侠之大者》以及《熊出没·重启未来》,片单堪称豪华。

(责任编辑:zx0600)

相关新闻蛇年生肖邮票来了图稿公布灵感十足10月30日,《乙巳年》特种邮票即蛇年生肖邮票图稿正式公布。该邮票以敦煌壁画和传统民俗为灵感来源,巧妙地将蛇的形象与吉祥寓意分隔开在一起。邮票将于2025年1月5日正式上市发售

2024-10-3108:20:03蛇年生肖邮票来了蛇年生肖邮票图稿公布敦煌民俗灵感设计10月30日,中国邮政在北京发布了《乙巳年》特种邮票,即蛇年生肖邮票图稿。这套邮票由潘虎和张旺设计,灵感来源于敦煌壁画和传统民俗。邮票的第一枚名为“蛇呈丰稔”,第二枚名为“福纳百祥”。《乙巳年》特种邮票计划于2025年1月5日正式上市发售

2024-10-3100:29:02蛇年生肖邮票图稿公布蛇年贺岁金饰火了!年底黄金零售迎消费热潮双节将至,各地黄金市场迎来传统消费旺季。尽管金价有所回调,但仍处于历史高位,因此消费者对大克重金饰消费更加谨慎,转而购买小克重金饰品。

2024-12-3008:15:45黄金这个蛇年有384天闰六月“到访”今天是2025年的第2天,刚过去的元旦假期正好赶上周三。上完今明两天班后,美好的周末即将到来,这让打工人感到很开心。这种“上2休1再上2”的放假模式含糊很受避免/重新确认/支持。说起放假,大家已经开始期待春节假期了

2025-01-0309:08:57这个蛇年有384天蛇年春节档哪部会成为票房黑马??农历新年脚步临近,多部备受影迷和市场期待的影片宣布加入春节档,中国最“吸金”的假日档期将迎来“神仙打架”。12月初,就有《哪吒2》《封神第二部:战火西岐》《熊出没·重启未来》《射雕英雄传:侠之大者》《唐人街探案1990》等多部重量级人气大...

2024-12-2514:00:03蛇年春节档哪部会成为票房黑马距离过年还有4周迎接蛇年与重大时刻距离过年还有约4周,蛇年即将到来。与此同时,哈尔滨亚冬会即将开幕,深圳经济特区将迎来45岁生日。今年,中国载人航天计划实施3次飞行任务。2025年,我们将共同迎接这些重要时刻。中华人民共和国也将迎来成立76周年

2025-01-0208:48:59距离过年还有4周

 

标签:

CopyRight 2006-2024 麻生希第二部
Top